【題目】為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門對某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測調(diào)研,檢測某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).

規(guī)定:當(dāng)食品中的有害微量元素的含量在時(shí)為一等品,在為二等品,20以上為劣質(zhì)品.

1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;

2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設(shè)這兩件食品給該廠帶來的盈利為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】12















【解析】試題分析:(1)先根據(jù)分層抽樣確定甲中一等品有2個(gè),非一等品有個(gè);乙中一等品有3個(gè),非一等品有2個(gè);再分類確定甲的一等品數(shù)與乙的一等品數(shù)相等的情況有三種互斥事件:0個(gè),1個(gè),2個(gè),根據(jù)概率乘積公式分別求出獨(dú)立事件同時(shí)發(fā)生概率,最后根據(jù)概率加法求互斥事件概率(2)先確定隨機(jī)變量取法:可取,再分別求出對應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求數(shù)學(xué)期望

試題解析:(1)從甲中抽取的個(gè)數(shù)據(jù)中,一等品有個(gè),非一等品有個(gè),從乙中抽取個(gè)數(shù)據(jù)中,一等品有個(gè),非一等品有個(gè),設(shè)從甲中抽取個(gè)數(shù)據(jù)中任取個(gè),一等品的個(gè)數(shù)為為事件,.

設(shè)從乙中抽取個(gè)數(shù)據(jù)中任取個(gè),一等品的個(gè)數(shù)為為事件,.

甲的 一等品數(shù)與乙 的一等品數(shù)相等的概率為:

.

2)由題意,設(shè)從甲中任取一件為一等品為事件,則,

設(shè)從甲中任取一件為二等品為事件,則,

設(shè)從甲中任取一件為劣質(zhì)品為事件,則.

設(shè)從乙中任取一件為一等品為事件,則,

設(shè)從乙中任取一件為二等品為事件,則,

設(shè)從乙中任取一件為劣質(zhì)品為事件,則.可取

.,,

.

的分布列為















.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=,anbn+1+bn+1=nbn

分別求數(shù)列{an},{bn}的通項(xiàng)公式;

令cn= an bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點(diǎn).

(1)若分別是的中點(diǎn),求證:平面;

(2)求證:不論在何位置,四棱錐的體積都為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列中,已知,,,設(shè)的前項(xiàng)和

(1)求證:數(shù)列是等差數(shù)列;

(2);

(3)是否存在正整數(shù),,,使成等差數(shù)列?若存在,求出,,的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,是6與的等差中項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)是否存在正整數(shù),使不等式恒成立,若存在,求出的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為

(1)求的值;

(2)若不等式的解集為,不等式的解集為,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)證明當(dāng)時(shí),關(guān)于的不等式恒成立;

(3)若正實(shí)數(shù)滿足,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù),其中,曲線過點(diǎn),且在點(diǎn)處的切線方程為

I)求的值;

II)證明:當(dāng)時(shí),;

III)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若曲線處的切線的方程為,求實(shí)數(shù)的值;

(2)設(shè),若對任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案