己知點F為拋物線C:y2=x的焦點,斜率為1的直線l交拋物線于不同兩點P,Q.以F為圓心,以FP,F(xiàn)Q為半徑作圓,分別交x軸負(fù)半軸于M,N,直線PM,QN交于點T.
(I)判斷直線PM與拋物線C的位置關(guān)系,并說明理由;
(II)連接FT,F(xiàn)Q,F(xiàn)P,記S1=S△PFT,S2=S△QFT,S3=S△PQT設(shè)直線l在y軸上的截距為m,當(dāng)m何值時,
S1S2S3
取得最小值,并求出取到最小值時直線l的方程.
分析:(I)設(shè)出P,Q的坐標(biāo),求出直線PM的方程,代入拋物線方程,利用判別式可得結(jié)論;
(II)將直線PQ:y=x+m代入y2=x可得y2-y+m=0,計算點F到直線PT的距離,點Q到直線PT的距離,從而可得
S1
S3
=
d1
d2
=
1+4y12
4(y1-y2)2
=
1+4y12
4(1-4m)
,同理
S2
S3
1+4y22
4(1-4m)
沒勁兒可得
S1S2
S3
=
16m2-8m+5
64
1-4m
,令t=
1-4m
>0
,則
S1S2
S3
=
1
64
(t3+
4
t
)=f(t)
,利用導(dǎo)數(shù)法,即可求出
S1S2
S3
的最小值,從而可得取到最小值時直線l的方程.
解答:解:(I)設(shè)P(x1,y1),Q(x2,y2),由題意及拋物線的定義知:M(-x1,0),N(-x2,0),
KMP=
y1
2x1
=
1
2y1

∴直線PM:y-y1=
1
2y1
(x-x1)
,即x-2y1y+y12=0
代入y2=x可得y2-2y1y+y12=0
△=4y12-4y12=0
∴直線PM與拋物線C相切;
(II)直線PQ:y=x+m代入y2=x可得y2-y+m=0
∴y1+y2=1,y1y2=m
點F到直線PT的距離d1=
|
1
4
+y12|
1+4y12
;點Q到直線PT的距離d2=
|x2-2y1y2+y12|
1+4y12
(y1-y2)2
1+4y12

S1
S3
=
d1
d2
=
1+4y12
4(y1-y2)2
=
1+4y12
4(1-4m)
,同理
S2
S3
1+4y22
4(1-4m)

又直線PM與QN的交點T(y1y2
y1+y2
2
)
,∴T(m,
1
2
)

S3=
1
2
|PQ|d=
|y1-y2||1-4m|
4

S1S2
S3
=
16m2-8m+5
64
1-4m

令t=
1-4m
>0
,∴
S1S2
S3
=
1
64
(t3+
4
t
)=f(t)

f′(t)=
1
64
(3t2-
4
t2
)=
3t4-4
64t2

∴f(t)在(0,
4
4
3
)
上單調(diào)遞減,在(
4
4
3
,+∞)
上單調(diào)遞增
S1S2
S3
≥ 
1
12
4
3
4
,此時m=
1
4
-
3
6
,即直線l的方程為y=x+
1
4
-
3
6

綜上可知,
S1S2
S3
的最小值為
1
12
4
3
4
,取到最小值時直線l的方程為y=x+
1
4
-
3
6
點評:本題考查直線與拋物線的位置關(guān)系,考查三角形的面積,考查導(dǎo)數(shù)法求函數(shù)的最值,解題的關(guān)鍵是構(gòu)建函數(shù)關(guān)系式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•溫州二模)拋物線y2=2px(p>0)的準(zhǔn)線交x軸于點C,焦點為F.A、B是拋物線上的兩點.己知A.B,C三點共線,且|AF|、|AB|、|BF|成等差數(shù)列,直線AB的斜率為k,則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三5月模擬考試(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,己知直線l與拋物線相切于點P(2,1),且與x軸交于點A,定點B(2,0).

(1)若動點M滿足,求點M軌跡C的方程:

(2)若過點B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市高三(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

己知點F為拋物線C:y2=x的焦點,斜率為1的直線l交拋物線于不同兩點P,Q.以F為圓心,以FP,F(xiàn)Q為半徑作圓,分別交x軸負(fù)半軸于M,N,直線PM,QN交于點T.
(I)判斷直線PM與拋物線C的位置關(guān)系,并說明理由;
(II)連接FT,F(xiàn)Q,F(xiàn)P,記S1=S△PFT,S2=S△QFT,S3=S△PQT設(shè)直線l在y軸上的截距為m,當(dāng)m何值時,取得最小值,并求出取到最小值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市高三(下)4月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

己知點F為拋物線C:y2=x的焦點,斜率為1的直線l交拋物線于不同兩點P,Q.以F為圓心,以FP,F(xiàn)Q為半徑作圓,分別交x軸負(fù)半軸于M,N,直線PM,QN交于點T.
(I)判斷直線PM與拋物線C的位置關(guān)系,并說明理由;
(II)連接FT,F(xiàn)Q,F(xiàn)P,記S1=S△PFT,S2=S△QFT,S3=S△PQT設(shè)直線l在y軸上的截距為m,當(dāng)m何值時,取得最小值,并求出取到最小值時直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案