已知函數(shù),
(1)求函數(shù)的周期及單調(diào)遞增區(qū)間;
(2)在中,三內(nèi)角,,的對邊分別為,已知函數(shù)的圖象經(jīng)過點(diǎn)成等差數(shù)列,且,求的值.
(1)最小正周期:,遞增區(qū)間為:;
(2).
解析試題分析:首先應(yīng)用和差倍半的三角函數(shù)公式,化簡得到
(1)最小正周期:,利用“復(fù)合函數(shù)的單調(diào)性”,求得的單調(diào)遞增區(qū)間;
(2)由及可得,
根據(jù)成等差數(shù)列,得,
根據(jù) 得,應(yīng)用余弦定理即得所求.
試題解析:
3分
(1)最小正周期:, 4分
由可解得:
,
所以的單調(diào)遞增區(qū)間為:; 6分
(2)由可得:
所以, 8分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/1/jynu42.png" style="vertical-align:middle;" />成等差數(shù)列,所以, 9分
而 10分
,
. 12分
考點(diǎn):等差數(shù)列,和差倍半的三角函數(shù),余弦定理的應(yīng)用,三角函數(shù)的性質(zhì),平面向量的數(shù)量積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)求的值及函數(shù)的最小正周期;
(2)求函數(shù)在上的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,某市政府決定在以政府大樓為中心,正北方向和正東方向的馬路為邊界的扇形地域內(nèi)建造一個(gè)圖書館.為了充分利用這塊土地,并考慮與周邊環(huán)境協(xié)調(diào),設(shè)計(jì)要求該圖書館底面矩形的四個(gè)頂點(diǎn)都要在邊界上,圖書館的正面要朝市政府大樓.設(shè)扇形的半徑 ,,與之間的夾角為.
(1)將圖書館底面矩形的面積表示成的函數(shù).
(2)求當(dāng)為何值時(shí),矩形的面積有最大值?其最大值是多少?(用含R的式子表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2sin(2ωx+φ)(ω>0,φ∈(0,π))的圖象中相鄰兩條對稱軸間的距離為,且點(diǎn)是它的一個(gè)對稱中心.
(1)求f(x)的表達(dá)式;
(2)若f(ax)(a>0)在上是單調(diào)遞減函數(shù),求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)f(x)=sinsin+sinxcosx(x∈R).
(1)求f的值;
(2)在△ABC中,若f=1,求sinB+sinC的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com