【題目】已知奇函數(shù)fx=,

1)求實(shí)數(shù)m的值

2)作出的圖象,并指出當(dāng)方程只有一解,a的取值范圍(不必寫過程)

3)若函數(shù)在區(qū)間 上單調(diào)遞增,求的取值范圍.

【答案】(1)m=2(2)圖像見解析,{a|a-1a1}(3)1b≤3

【解析】

1)利用函數(shù)的奇偶性轉(zhuǎn)化求解m即可.

2)利用函數(shù)的解析式畫出函數(shù)的圖象,然后求解a的取值范圍即可.

3)結(jié)合函數(shù)的圖象求b的取值范圍.

1)設(shè)x0,則x0,∴fx=x22x,

∵函數(shù)是奇函數(shù),∴fx=fx=x2+2xx0).

m=2

2)函數(shù)圖象如圖所示:

當(dāng)方程fxa=0只有一解,a的取值范圍:{a|a1a1}

3)由圖象可知,1b-2≤1,得1b≤3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為拋物線上的兩點(diǎn),的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為.

(1)求拋物線的方程;

(2)已知點(diǎn)、為拋物線(除原點(diǎn)外)上的不同兩點(diǎn),直線、的斜率分別為,,且滿足,記拋物線、處的切線交于點(diǎn),線段的中點(diǎn)為,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線,點(diǎn), ,過點(diǎn)的直線交于 兩點(diǎn).

1)當(dāng)軸垂直時,求直線的方程;

2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中三年級的甲、乙兩個同學(xué)同時參加某大學(xué)的自主招生,在申請的材料中提交了某學(xué)科10次的考試成績,記錄如下:

甲:78 86 95 97 88 82 76 89 92 95

乙:73 83 69 82 93 86 79 75 84 99

(1)根據(jù)兩組數(shù)據(jù),作出兩人成績的莖葉圖,并通過莖葉圖比較兩人本學(xué)科成績平均值的大小關(guān)系及方差的大小關(guān)系(不要求計算具體值,直接寫出結(jié)論即可)

(2)現(xiàn)將兩人的名次分為三個等級:

成績分?jǐn)?shù)

等級

合格

良好

優(yōu)秀

根據(jù)所給數(shù)據(jù),從甲、乙獲得“優(yōu)秀”的成績組合中隨機(jī)選取一組,求選中甲同學(xué)成績高于乙同學(xué)成績的組合的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長交AB于點(diǎn)G.

)證明:GAB的中點(diǎn);

)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某服裝商場,當(dāng)某一季節(jié)即將來臨時,季節(jié)性服裝的價格呈現(xiàn)上升趨勢.設(shè)一種服裝原定價為每件70元,并且每周(7天)每件漲價6元,5周后開始保持每件100元的價格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過去時,平均每周每件降價6元,直到16周末,該服裝不再銷售.

(1)試建立每件的銷售價格(單位:元)與周次之間的函數(shù)解析式;

(2)若此服裝每件每周進(jìn)價(單位:元)與周次之間的關(guān)系為,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價格-每件進(jìn)價)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).

(1)求雙曲線C2的方程;

(2)若直線lykx與雙曲線C2恒有兩個不同的交點(diǎn)AB,且,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為邊長為2的菱形,平面,分別是,的中點(diǎn).

(1)判定是否垂直,并說明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 ,若存在實(shí)數(shù)使得一條曲線與直線有兩個不同的交點(diǎn),且以這兩個交點(diǎn)為端點(diǎn)的線段長度恰好等于,則稱此曲線為直線的“絕對曲線”.下面給出的四條曲線方程:

;②;③;④.

其中直線的“絕對曲線”的條數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案