【題目】2019年春節(jié)期間,我國(guó)高速公路繼續(xù)執(zhí)行節(jié)假日高速公路免費(fèi)政策某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費(fèi)點(diǎn)記錄了大年初三上午9:20~10:40這一時(shí)間段內(nèi)通過的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車通過該收費(fèi)點(diǎn),它們通過該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如下圖所示,其中時(shí)間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.例如:10點(diǎn)04分,記作時(shí)刻64.

1)估計(jì)這600輛車在9:20~10:40時(shí)間段內(nèi)通過該收費(fèi)點(diǎn)的時(shí)刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)為了對(duì)數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再?gòu)倪@10輛車中隨機(jī)抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過的車輛數(shù)為X,求X的分布列與數(shù)學(xué)期望;

3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費(fèi)點(diǎn)的時(shí)刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車通過該收費(fèi)點(diǎn),估計(jì)在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).

參考數(shù)據(jù):若,則,.

【答案】110點(diǎn)04分(2)分布列見解析, 3819

【解析】

1)利用頻率分布直方圖和平均數(shù)的計(jì)算公式,即可求得這600輛車在9:20~10:40時(shí)間段內(nèi)通過該收費(fèi)點(diǎn)的時(shí)刻的平均值;

2)結(jié)合頻率分布直方圖和分層抽樣的方法求得隨機(jī)變量的可能取值,求出相應(yīng)的概率,得到的分布列,利用期望的公式,求得其數(shù)學(xué)期望;

3)由(1)可得,得到,得到概率,即可求解在9:46~10:40這一時(shí)間段內(nèi)通過的車輛數(shù).

1)由題意,這600輛車在9:20~10:40時(shí)間段內(nèi)通過該收費(fèi)點(diǎn)的時(shí)刻的平均值為

,即10點(diǎn)04.

2)結(jié)合頻率分布直方圖和分層抽樣的方法可知:抽取的10輛車中,在10:00前通過的車輛數(shù)就是位于時(shí)間分組中在這一區(qū)間內(nèi)的車輛數(shù),即,所以X的可能取值為0,1,23,1.

所以,

,,

所以X的分布列為

X

0

1

2

3

4

P

所以.

3)由(1)可得,

所以.

估計(jì)在9:46~10:40這一時(shí)間段內(nèi)通過的車輛數(shù),也就是通過的車輛數(shù),

,

,

所以,估計(jì)在9:46~10:40這一時(shí)間段內(nèi)通過的車輛數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線折起,使得平面平面,則所得三棱錐的外接球表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棱長(zhǎng)為1的正方體內(nèi)部有一圓柱,此圓柱恰好以直線為軸.有下列命題:

①圓柱的母線與正方體所有的棱所成的角都相等;

②正方體所有的面與圓柱的底面所成的角都相等;

③在正方體內(nèi)作與圓柱底面平行的截面,則截面的面積;

④圓柱側(cè)面積的最大值為.

其中正確的命題是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把方程表示的曲線作為函數(shù)的圖象,則下列結(jié)論正確的是(

R上單調(diào)遞減

的圖像關(guān)于原點(diǎn)對(duì)稱

的圖象上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為3

④函數(shù)不存在零點(diǎn)

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知某市穿城公路自西向東到達(dá)市中心后轉(zhuǎn)向東北方向,,現(xiàn)準(zhǔn)備修建一條直線型高架公路,在上設(shè)一出入口,在上設(shè)一出入口,且要求市中心所在的直線距離為.

1)求兩出入口間距離的最小值;

2)在公路段上距離市中心點(diǎn)處有一古建筑(視為一點(diǎn)),現(xiàn)設(shè)立一個(gè)以為圓心,為半徑的圓形保護(hù)區(qū),問如何在古建筑和市中心之間設(shè)計(jì)出入口,才能使高架公路及其延長(zhǎng)線不經(jīng)過保護(hù)區(qū)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通安全法有規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速行駛;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行.機(jī)動(dòng)車行經(jīng)沒有交通信號(hào)的道路時(shí),遇行人橫過馬路,應(yīng)當(dāng)避讓.我們將符合這條規(guī)定的稱為“禮讓斑馬線”,不符合這條規(guī)定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員“不禮讓斑馬線”行為的統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

“不禮讓斑馬線”的駕駛員人數(shù)

120

105

100

85

90

1)根據(jù)表中所給的5個(gè)月的數(shù)據(jù),可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;

2)求“不禮讓斑馬線”的駕駛員人數(shù)關(guān)于月份之間的線性回歸方程;

3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再?gòu)乃x取的6人中任意抽取2人進(jìn)行交規(guī)調(diào)查,求抽取的2人分別來自兩個(gè)月份的概率;

參考公式:線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形中,,,,,點(diǎn)E上,且,將三角形沿線段折起到的位置,(如圖2.

1)求證:平面平面;

2)在線段上是否存在點(diǎn)M,使平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=axex,gx)=x2+2x+b,若曲線yfx)與曲線ygx)都過點(diǎn)P1,c).且在點(diǎn)P處有相同的切線l

(Ⅰ)求切線l的方程;

(Ⅱ)若關(guān)于x的不等式k[efx]≥gx)對(duì)任意x[1+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某市年全社會(huì)固定資產(chǎn)投資以及增長(zhǎng)率如圖所示,則下列說法錯(cuò)誤的是(

A.2013年到2019年全社會(huì)固定資產(chǎn)的投資處于不斷增長(zhǎng)的狀態(tài)

B.2013年到2019年全社會(huì)固定資產(chǎn)投資的平均值為億元

C.該市全社會(huì)固定資產(chǎn)投資增長(zhǎng)率最高的年份為2014

D.2016年到2017年全社會(huì)固定資產(chǎn)的增長(zhǎng)率為0

查看答案和解析>>

同步練習(xí)冊(cè)答案