如圖橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的上頂點為A,左頂點為B,F(xiàn)為右焦點,過F作平行與AB的直線交橢圓于C、D兩點.作平行四邊形OCED,E恰在橢圓上.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為
6
,求橢圓的方程.
分析:(I)根據(jù)題意可知AB的斜率,進而根據(jù)點斜式表示出直線CD的方程,代入橢圓方程,進而可表示出CD的中點的坐標,則E點的坐標可得,代入橢圓方程即可求得a和c的關系式求得離心率e.
(II)先設直線CD的方程,將直線的方程代入橢圓的方程,消去y得到關于x的一元二次方程,再結合根系數(shù)的關系利用弦長公式即可求得c值,從而解決問題.
解答:解:(Ⅰ)∵焦點為F(c,0),AB斜率為
b
a
,故CD方程為y=
b
a
(x-c).與橢圓聯(lián)立后消去y得2x2-2cx-b2=0.
∵CD的中點為G(
c
2
,-
bc
2a
),點E(c,-
bc
a
)在橢圓上,
∴將E(c,-
bc
a
)代入橢圓方程并整理得2c2=a2,
∴e=
c
a
=
2
2

(Ⅱ)由(Ⅰ)知CD的方程為y=
2
2
(x-c),b=c,a=
2
c.
與橢圓聯(lián)立消去y得2x2-2cx-c2=0.
∵平行四邊形OCED的面積為:
S=c|yC-yD|=
2
2
c
(xC+xD)2-4xCxD

=
2
2
c
c2+2c2
=
6
2
c2=
6

∴c=
2
,a=2,b=
2

故橢圓方程為
x2
4
+
y2
2
=1
點評:本題主要考查了橢圓的簡單性質,考查了學生綜合運用基礎知識的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1
x2
4
+y2=1和C2
x2
16
+
y2
4
=1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知橢圓C:
x2
a2
+
y2
2
=1(a>
2
)
的左右焦點分別為F1、F2,點B為橢圓與y軸的正半軸的交點,點P在第一象限內且在橢圓上,且PF2與x軸垂直,
F1P
OP
=5

(1)求橢圓C的方程;
(2)設點B關于直線l:y=-x+n的對稱點E(異于點B)在橢圓C上,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
3
2
,過橢圓C上一點P(2,1)作傾斜角互補的兩條直線,分別與橢圓交于點A、B,直線AB與x軸交于點M,與y軸負半軸交于點N.
(Ⅰ)求橢圓C的方程:
(Ⅱ)若S△PMN=
3
2
,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,點F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A、B分別是橢圓的右頂點與上頂點,橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對于x軸上的點P(t,0),橢圓W上存在點Q,使得PQ⊥AQ,求實數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點M、N (M、N異于橢圓的左右頂點),若以MN為直徑的圓過橢圓W的右頂點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

同步練習冊答案