精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,所有棱長(zhǎng)都相等,且AA1⊥底面ABC,則BC1與平面ACC1A1所成角的余弦值為( 。
分析:取AC的中點(diǎn)O,連接OC1,證明∠OC1B是BC1與平面ACC1A1所成角,利用三角函數(shù)可得結(jié)論.
解答:精英家教網(wǎng)解:取AC的中點(diǎn)O,連接OC1,則
∵AA1⊥底面ABC,∴平面ACC1A1⊥底面ABC,
∵△ABC是正三角形,∴BO⊥AC,
∴BO⊥平面ACC1A1,
∴∠OC1B是BC1與平面ACC1A1所成角,
設(shè)棱長(zhǎng)為2,則在△OC1B中,BC1=2
2
,BO=
3
,OC1=
5
,
∴cos∠OC1B=
OC1
BC1
=
5
2
2
=
10
4

故選C.
點(diǎn)評(píng):本題考查線面角,考查學(xué)生的計(jì)算能力,正確作出線面角是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點(diǎn),平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,則此三棱柱的側(cè)視圖的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
(1)求證:平面A1CB⊥平面ACB1;
(2)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若N是AB上一點(diǎn),且
AN
AB
=
CM
CC1
,求證:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求證:BC⊥AC1
(2)試探究:在AC上是否存在點(diǎn)F,滿足EF∥平面A1ABB1,若存在,請(qǐng)指出點(diǎn)F的位置,并給出證明;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案