用三段論推理命題:“任何實數(shù)的平方大于0,因為a是實數(shù),所以a2>0”,你認為這個推理( )
A.大前題錯誤 | B.小前題錯誤 | C.推理形式錯誤 | D.是正確的 |
科目:高中數(shù)學 來源: 題型:單選題
圖1,2,3,4分別包含1,5,13和25個互不重疊的單位正方形,按同樣的方式構(gòu)造圖形,則第個圖包含______個互不重疊的單位正方形。
圖1 圖2 圖3 圖4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
法國數(shù)學家費馬觀察到,,,都是質(zhì)數(shù),于是他提出猜想:任何形如N*)的數(shù)都是質(zhì)數(shù),這就是著名的費馬猜想. 半個世紀之后,善于發(fā)現(xiàn)的歐拉發(fā)現(xiàn)第5個費馬數(shù)不是質(zhì)數(shù),從而推翻了費馬猜想,這一案例說明( )
A.歸納推理,結(jié)果一定不正確 | B.歸納推理,結(jié)果不一定正確 |
C.類比推理,結(jié)果一定不正確 | D.類比推理,結(jié)果不一定正確 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
用反證法證明命題:“若整系數(shù)一元二次方程有有理根,那么中至少有一個是偶數(shù)時,下列假設中正確的是
A.假設都是偶數(shù) |
B.假設都不是偶數(shù) |
C.假設至多有一個是偶數(shù) |
D.假設至多有兩個是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
用反證法證明“自然數(shù)a,b,c中恰有一個偶數(shù)”時,下列假設正確的是 ( )
A.假設a,b,c都是奇數(shù)或至少有兩個偶數(shù) |
B.假設a,b,c都是偶數(shù) |
C.假設a,b,c至少有兩個偶數(shù) |
D.假設a, b,c都是奇數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
用數(shù)學歸納法證明1+2+3+…+n2=,則當n=k+1時左端應在n=k的基礎上加上( )
A.k2+1 |
B.(k+1)2 |
C. |
D.(k2+1)+(k2+2)+…+(k+1)2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集):
①“若a,b∈R,則a-b=0⇒a=b”,類比推出“若a,b∈C,則a-b=0⇒a=b”;
②“若a,b,c,d∈R,則復數(shù)a+bi=c+di⇒a=c,b=d”,類比推出,“若a,b,c,d∈Q,則a+b=c+d⇒a=c,b=d”;
③“若a,b∈R,則a-b>0⇒a>b”,類比推出“若a,b∈C,則a-b>0⇒a>b”;
④“若x∈R,則|x|<1⇒-1<x<1”,類比推出“若z∈C,則|z|<1⇒-1<z<1”.
其中類比正確的為( )
A.①② | B.①④ | C.①②③ | D.②③④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com