(本小題滿分12分)如圖,在三棱錐中,底面
,
點,分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)為的中點時,求與平面所成的角的余弦值;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.
解:【解法1】本題主要考查直線和平面垂直、直線與平面所成的角、二面角等基礎(chǔ)知識,考查空間想象能力、運算能力和推理論證能力.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC. 又,∴AC⊥BC.∴BC⊥平面PAC. …………
(Ⅱ)∵D為PB的中點,DE//BC,
∴,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足為點E.
∴∠DAE是AD與平面PAC所成的角,∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP為等腰直角三角形,∴,
∴在Rt△ABC中,,∴.
∴在Rt△ADE中,,
∴與平面所成的角的余弦值為.…………
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP為二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴.
∴在棱PC上存在一點E,使得AE⊥PC,這時,
故存在點E使得二面角是直二面角. …………
【解法2】如圖,以A為原煤點建立空間直角坐標(biāo)系,
設(shè),由已知可得 .
(Ⅰ)∵, ∴,∴BC⊥AP.
又∵,∴BC⊥AC,∴BC⊥平面PAC. …………
(Ⅱ)∵D為PB的中點,DE//BC,∴E為PC的中點, ∴,
∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足為點E.
∴∠DAE是AD與平面PAC所成的角,
∵,∴.
∴與平面所成的角的余弦值為.……… (Ⅲ)同解法1.
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com