、
是不同的直線,
、
、
是不同的平面,有以
下四個命題
① 若
,則
; ②若
,則
;
③ 若
,則
; ④若
,則
.
其中真命題的序號是( )
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,棱柱ABCD-A
1B
1C
1D
1的底面ABCD為菱形,平面AA
1C
1C⊥平面ABCD.
(1)證明:BD⊥AA
1;
(2)證明:平面AB
1C//平面DA
1C
1(3)在直線CC
1上是否存在點P,使BP//平面DA
1C
1?若存在,求出點P的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知三棱柱ABC﹣A
1B
1C
1中,AA
1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點.
(1)求證:BD⊥AC
1 ;
(2)若AB=
,AA
1=
,求AC
1與平面ABC所成的角.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,PA
底面ABCD,點M是棱PC的中點,AM
PBD.
(1)求PA的長
(2)證明PB
平面AMD
(3)求棱PC與平面AMD所成角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知四邊形
是邊長為
的正方形,
分別為
的中點,沿
將
向同側(cè)折疊且與平面
成直二面角,連接
(1)求證
;
(2)求平面
與平面
所成銳角的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
把正方形ABCD沿對角線AC折起,當A、B C、D四點為頂點的三棱錐體積最大時,直線BD與平面ABC所成的角的大小為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
有四根長都為2的直鐵條,若再選兩根長都為a的直鐵條,使這六根鐵條端點處相連能夠焊接成一個三棱錐形的鐵架,則a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知平面
,在
內(nèi)有4個點,在
內(nèi)有6個點,以這些點為頂點,最多可作
個三棱錐,在這些三棱錐中最多可以有
個不同的體積.
查看答案和解析>>