已知函數(shù)g(x)=-4cos2(x+)+4sin(x+)-a,把函數(shù)y=g(x)的圖象按向量(-,1)平移后得到y(tǒng)=f(x)的圖象.

(Ⅰ)求函數(shù)y=lo[f(x)+8+a]的值域;

(Ⅱ)當x∈[-]時f(x)=0恒有解,求實數(shù)a的取值范圍.

答案:
解析:

  解:把函數(shù)按向量平移后得  2分

  (Ⅰ)  3分

    5分

  則函數(shù)的值域為;  7分

  (Ⅱ)當時,,

    9分

  恒有解,,  11分

  即  12分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:山東省泰安市2012屆高三上學期期中考試數(shù)學文科試題 題型:044

已知函數(shù)g(x)=-k僅有一個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=-x3x2+(m2-1)x(x∈R),其中m>0.

(1)當m=1時,求曲線yf(x)在(1,f(1))點處的切線的方程;

(2)求函數(shù)f(x)的單調區(qū)間與極值;

(3)已知函數(shù)g(x)=f(x)+有三個互不相同的零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x>,函數(shù)f(x)=x2,h(x)=2elnx(e為自然常數(shù)).

(1)求證:f(x)≥h(x);

(2)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數(shù)h(x)的圖像為函數(shù)f(x),g(x)的“邊界”.已知函數(shù)g(x)=-4x2pxq(pq∈R),試判斷“函數(shù)f(x),g(x)以函數(shù)h(x)的圖像為邊界”和“函數(shù)f(x),g(x)的圖像有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數(shù)pq的值;若不能同時成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=ax3bx2cx(a∈R且a≠0),g(-1)=0,且g(x)的導函數(shù)f(x)滿足f(0)f(1)≤0.設x1x2為方程f(x)=0的兩根.

(1)求的取值范圍;

(2)若當|x1x2|最小時,g(x)的極大值比極小值大,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇省高一第二學期第一次月考數(shù)學試 題型:解答題

已知函數(shù)f(x)=3x2+bx+c,不等式f(x)>0的解集為(-∞,-2)∪(0,+∞). 

(1) 求函數(shù)f(x)的解析式;

(2) 已知函數(shù)g(x)=f(x)+mx-2在(2,+∞)上單調增,求實數(shù)m的取值范圍;

(3) 若對于任意的x∈[-2,2],f(x)+n≤3都成立,求實數(shù)n的最大值.

 

查看答案和解析>>

同步練習冊答案