如圖,四面體ABCD中,O、E分別是BD、BC的中點,

(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點E到平面ACD的距離。
(I)連結OC, 平面
(II)(III)

試題分析:(I)證明:連結OC


中,由已知可得
    
   平面
(II)解:取AC的中點M,連結OM、ME、OE,由E為BC的中點知
直線OE與EM所成的銳角就是異面直線AB與CD所成的角
中,

是直角斜邊AC上的中線,
(III)解:設點E到平面ACD的距離為
中,
 而
點E到平面ACD的距離為
點評:本題還可用空間向量來證明計算
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱(側棱垂直于底面的棱柱)中, , , , ,點的中點.

(Ⅰ) 求證:∥平面;
(Ⅱ)求AC1與平面CC1B1B所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩條不同的直線,是三個不同的平面.給出下列四個命題:
①若, ,則;
②若,則;
③若,則;
④若,則
其中正確命題的序號是(  )
A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖, 空間四邊形ABCD中,若
所成角為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正方體A1B1C1D1­ABCD中,E是C1D1的中點,則異面直線DE與AC夾角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線m、n及平面,其中m∥n,那么在平面內到兩條直線m、n距離相等的點的集合可能是:(1)一條直線;(2)一個平面;(3)一個點;(4)空集.其中正確的是__________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,正三棱柱ABC—A1B1C1中,D是BC的中點,AA1=AB=1.

(I)求證:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求點C到平面AB1D的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

邊長為a的正方形ABCD沿對角線AC將△ADC折起,若∠DAB=60°,則二面角D—AC—B的大小為(  )
A.60°B.90°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是平面內的兩條不同直線,是平面內兩條相交直線,則的一個充分不必要條件是(   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案