在直平行六面體AC1中,ABCD是菱形,∠DAB=60°,ACBD=0,ABAA1

(1)求證:C1O∥平面AB1D1

(2)求證:平面AB1D1⊥平面ACC1A1;

(3)求直線AC與平面AB1D1所成角的大。

答案:
解析:

  證明:(1)連接A1C1B1D1O1,連結(jié)AO1

  

  

  

  命題意圖:熟悉立體幾何中常見問題及處理方法,要求學(xué)生敏銳把握所給圖形特征,制定合理的解決問題策略.立體幾何主要是兩種位置關(guān)系(平行、垂直),兩個(gè)度量性質(zhì)(夾角、距離).解決問題的方法也有兩種:幾何方法和向量方法.兩種方法各有優(yōu)缺點(diǎn),前者難在“找”和“作”的技巧性,后者難在建系和計(jì)算上,究竟用哪種方法,到時(shí)根據(jù)自己的情況決斷.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直平行六面體AC1中,ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1
(1)求證:C1O∥平面AB1D1;
(2)求直線AC與平面AB1D1所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直平行六面體AC1中,ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1
(1)求證:C1O∥平面AB1D1;
(2)求證:平面AB1D1⊥平面ACC1A1;
(3)求直線AC與平面AB1D1所成角的正弦值.
★你能同時(shí)用好“由因?qū)Ч蛨?zhí)果索因”的證明嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直平行六面體AC1中,ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1
(1)求證:C1O∥平面AB1D1;
(2)求證:平面AB1D1⊥平面ACC1A1
(3)求直線AC與平面AB1D1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省宜昌一中高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在直平行六面體AC1中,ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1
(1)求證:C1O∥平面AB1D1;
(2)求直線AC與平面AB1D1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南通市啟東中學(xué)高三數(shù)學(xué)考前輔導(dǎo)材料(2)(解析版) 題型:解答題

在直平行六面體AC1中,ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1
(1)求證:C1O∥平面AB1D1;
(2)求證:平面AB1D1⊥平面ACC1A1
(3)求直線AC與平面AB1D1所成角的正弦值.
★你能同時(shí)用好“由因?qū)Ч蛨?zhí)果索因”的證明嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案