已知平面上三個(gè)向量a,b,c的模均為1,它們之間的夾角均為120°.

(1)求證:(a-b)⊥c;

(2)若|ka+b+c|>1(k∈R),求k的取值范圍.

(1)證明:∵|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=120°,

∴a·c=|a||c|cos120°=,

b·c=|b||c|cos120°=.

∴(a-b)·c=a·c-b·c=()-()=0.

∴(a-b)⊥c.

(2)解:由|ka+b+c|>1,得|ka+b+c|2>1,

即(ka+b+c)2>1.

∴k2a2+b2+c2+2ka·b+2b·c+2kc·a>1,

即k2-2k>0.∴k<0或k>2.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上三個(gè)向量
a
,
b
,
c
的模均為1,它們相互之間的夾角均為120°.
(1)求證:(
a
-
b
)⊥
c
;
(2)若|k
a
+
b
+
c
|>1 (k∈R),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上三個(gè)向量
a
 ,
b
 ,
c
,其中
a
=(1, 2)
,
(1)若|
c
|=2
5
,且
a
c
,求
c
的坐標(biāo);
(2)若|
b
|=
5
2
,且(
a
+2
b
)⊥(2
a
-
b
)
,求
a
b
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上三個(gè)向量
a
,
b
c
的模均為1,它們相互之間的夾角為120°,
(1)求證:(
b
-
c
)⊥
a
;
(2)若|t
a
+
b
+
c
|>1
(t∈R),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上三個(gè)向量|
a
|=|
b
|=|
c
|=2,它們之間的夾角都是120°.
(I)求
a
c
的值.
(II)求證:(
a
-
b
)⊥
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上三個(gè)向量a、b、c的模均為1,它們相互之間的夾角均為120°.

(1)求證:(a-b)⊥c;

(2)若|ka+b+c|>1 (k∈R),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案