如圖,已知是平行四邊形所在平面外一點,、分別是、 的中點; 求證:平面
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中點.
(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的正弦值;
(3)以AC的中點O為球心、AC為直徑的球交PC于點N求點N到平面ACM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)如圖,在三棱錐中,
底面,點,
分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)為的中點時,求與平面所成的角的正弦;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
如圖一,平面四邊形關(guān)于直線對稱,。
把沿折起(如圖二),使二面角的余弦值等于。對于圖二,
(Ⅰ)求;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AB∥CD,BA⊥AD,且CD=2AB.
(1)若AB=AD=,直線PB與CD所成角為,
①求四棱錐P-ABCD的體積;
②求二面角P-CD-B的大;
(2)若E為線段PC上一點,試確定E點的位置,使得平面EBD垂直于平面ABCD,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.
(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,在四棱錐中,平面平面,為等邊三角形,底面為菱形,,為的中點,。
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點,使平面; 若存在,求出的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正方形的邊長為2,.將正方形沿對角線折起,
使,得到三棱錐,如圖所示.
(1)當(dāng)時,求證:;
(2)當(dāng)二面角的大小為時,求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)下面的一組圖形為某一四棱錐S-ABCD的側(cè)面與底面。
(1)請畫出四棱錐S-ABCD的直觀圖,是否存在一條側(cè)棱垂直于底面?如果存在,請給出證明;如果不存在,請說明理由;
(2)若SA面ABCD,E為AB中點,求二面角E-SC-D的大;
(3)求點D到面SEC的距離。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com