【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學(xué)從理工類專業(yè)的班和文史類專業(yè)的班各抽取名同學(xué)參加環(huán)保知識測試,統(tǒng)計得到成績與專業(yè)的列聯(lián)表:( )

優(yōu)秀

非優(yōu)秀

總計

14

6

20

7

13

20

總計

21

19

40

附:參考公式及數(shù)據(jù):

(1)統(tǒng)計量:,().

(2)獨立性檢驗的臨界值表:

0.050

0.010

3.841

6.635

則下列說法正確的是

A. 的把握認(rèn)為環(huán)保知識測試成績與專業(yè)有關(guān)

B. 的把握認(rèn)為環(huán)保知識測試成績與專業(yè)無關(guān)

C. 的把握認(rèn)為環(huán)保知識測試成績與專業(yè)有關(guān)

D. 的把握認(rèn)為環(huán)保知識測試成績與專業(yè)無關(guān)

【答案】A

【解析】分析:首先計算觀測值k0的值,然后給出結(jié)論即可.

詳解:由列聯(lián)表計算觀測值:,

則有的把握認(rèn)為環(huán)保知識測試成績與專業(yè)有關(guān).

本題選擇A選項.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l:y=kx+1與圓O:x2+y2=1相交于A,B 兩點,則“k=1”是“△OAB的面積為”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運動員自出發(fā)點出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運動員只有在摔倒或到達(dá)終點時才停止滑行,現(xiàn)在用表示該運動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).

(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價格(元)和時間(天)的關(guān)系如圖所示.

(1)求銷售價格(元)和時間(天)的函數(shù)關(guān)系式;

(2)若日銷售量(件)與時間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場第幾天時,日銷售額(元)最高,且最高為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一個社區(qū)微信群“步行者”有成員100人,其中男性70人,女性30人,現(xiàn)統(tǒng)計他們平均每天步行的時間,得到頻率分布直方圖,如圖所示:

若規(guī)定平均每天步行時間不少于2小時的成員為“步行健將”,低于2小時的成員為“非步行健將”.已知“步行健將”中女性占.

(1)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“是否為‘步行健將’與性別有關(guān)”;

(2)現(xiàn)從“步行健將”中隨機(jī)選派2人參加全市業(yè)余步行比賽,求2人中男性的人數(shù)的分布列及數(shù)學(xué)期望.

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量(其中),記,且滿足.

(1)求函數(shù)的解析式;

(2)若關(guān)于的方程上有三個不相等的實數(shù)根,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓系方程 (, ), 是橢圓的焦點, 是橢圓上一點,且.

(1)求的方程;

(2)為橢圓上任意一點,過且與橢圓相切的直線與橢圓交于, 兩點,點關(guān)于原點的對稱點為,求證: 的面積為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就稱甲、乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為慶祝成立二十周年,特舉辦《快樂大闖關(guān)》競技類有獎活動,該活動共有四關(guān),由兩名男職員與兩名女職員組成四人小組,設(shè)男職員闖過一至四關(guān)概率依次是,女職員闖過一至四關(guān)的概率依次是

(1)求女職員闖過四關(guān)的概率;

(2)設(shè)表示四人小組闖過四關(guān)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案