已知橢圓的離心率為,且過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線A   C、BD過原點(diǎn)O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;
(1). (2)(i)的最大值為2.  (ii)
.即,四邊形ABCD的面積為定值        

試題分析:(1)由題意,,又,              2分
解得,橢圓的標(biāo)準(zhǔn)方程為.                      4分
(2)設(shè)直線AB的方程為,設(shè)
聯(lián)立,得 
     -①
                                                    6分
  
                            7分

=                          8分

                                                    9分
(i)


當(dāng)k=0(此時(shí)滿足①式),即直線AB平行于x軸時(shí),的最小值為-2.
又直線AB的斜率不存在時(shí),所以的最大值為2.              11分
(ii)設(shè)原點(diǎn)到直線AB的距離為d,則

.
即,四邊形ABCD的面積為定值                      13分
點(diǎn)評(píng):對(duì)于直線與圓錐曲線的綜合問題,往往要聯(lián)立方程,同時(shí)結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解;而對(duì)于最值問題,則可將該表達(dá)式用直線斜率k表示,然后根據(jù)題意將其進(jìn)行化簡(jiǎn)結(jié)合表達(dá)式的形式選取最值的計(jì)算方式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn)
(1)求橢圓的方程;
(2)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分) 設(shè)橢圓E中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長(zhǎng)為4,點(diǎn)M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線L交橢圓E于A、B兩點(diǎn),且,求△OAB的面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

時(shí)秒“嫦娥二號(hào)”探月衛(wèi)星由長(zhǎng)征三號(hào)丙運(yùn)載火箭送入近地點(diǎn)高度約公里、遠(yuǎn)地點(diǎn)高度約萬公里的直接奔月橢圓(地球球心為一個(gè)焦點(diǎn))軌道Ⅰ飛行。當(dāng)衛(wèi)星到達(dá)月球附近的特定位置時(shí),實(shí)施近月制動(dòng)及軌道調(diào)整,衛(wèi)星變軌進(jìn)入遠(yuǎn)月面公里、近月面公里(月球球心為一個(gè)焦點(diǎn))的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機(jī)變軌進(jìn)入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開展相關(guān)技術(shù)試驗(yàn)和科學(xué)探測(cè)。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大。
(Ⅱ)以為右焦點(diǎn),求橢圓軌道Ⅱ的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,線段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過B1作直線l交橢圓于P,Q兩點(diǎn),使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知焦點(diǎn)在軸上的橢圓的離心率是,則的值為 (  )
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),且離心率
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在過點(diǎn)的直線交橢圓于不同的兩點(diǎn)M、N,且滿足(其中點(diǎn)O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知橢圓,是橢圓的頂點(diǎn),若橢圓的離心率,且過點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)作直線,使得,且與橢圓相交于兩點(diǎn)(異于橢圓的頂點(diǎn)),設(shè)直線和直線的傾斜角分別是,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為.設(shè)線段的中點(diǎn)為,若,則該橢圓離心率的取值范圍為           .

查看答案和解析>>

同步練習(xí)冊(cè)答案