【題目】已知向量與共線,其中A是△ABC的內(nèi)角.
(1)求角的大小;
(2)若BC=2,求△ABC面積的最大值,并判斷S取得最大值時△ABC的形狀.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:與圓O:相交于A,B兩個不同的點(diǎn),且A,B.
(1)當(dāng)面積最大時,求m的取值,并求出的長度.
(2)判斷是否為定值;若是,求出定值的大。蝗舨皇,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線 的參數(shù)方程為(為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有8名奧運(yùn)會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各名,組成一個小組.
(1)求被選中的概率;
(2)求和不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于某設(shè)備的使用年限和所支出的維修費(fèi)用(萬元),有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)如由資料可知對呈線形相關(guān)關(guān)系.試求:線形回歸方程;(,)
(2)估計使用年限為10年時,維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:與y軸交于O,A兩點(diǎn),圓C2過O,A兩點(diǎn),且直線C2O恰與圓C1相切;
(1)求圓C2的方程。
(2)若圓C2上一動點(diǎn)M,直線MO與圓C1的另一交點(diǎn)為N,在平面內(nèi)是否存在定點(diǎn)P使得PM=PN始終成立,若存在,求出定點(diǎn)坐標(biāo),若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 的方程為,點(diǎn)的坐標(biāo)為.
(Ⅰ)求過點(diǎn)且與直線平行的直線方程;
(Ⅱ)求過點(diǎn)且與直線垂直的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,, 且.
(1)求的值及數(shù)列的通項公式;
(2)令, 數(shù)列的前項和為, 試比較與的大小;
(3)令, 數(shù)列的前項和為, 求證: 對任意, 都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為非負(fù)實(shí)數(shù),函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)討論函數(shù)零點(diǎn)的個數(shù),并求出零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com