【題目】已知向量共線,其中AABC的內(nèi)角.

1)求角的大小;

2)若BC=2,求ABC面積的最大值,并判斷S取得最大值時ABC的形狀.

【答案】(12,等邊三角形

【解析】(1)因為mn,

所以sinA·(sinAcosA)0.所以sin2A0,

sin2Acos2A1,即sin1.

因為A(0π),所以2A.2AA.

(2)由余弦定理,得4b2c2bc.SABCbcsinAbc

b2c2≥2bcbc4≥2bcbc≤4(當(dāng)且僅當(dāng)bc時等號成立),

所以SABCbcsinAbc≤×4.

當(dāng)△ABC的面積取最大值時,bc.

A,故此時ABC為等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l與圓O:相交于A,B兩個不同的點(diǎn),且A,B.

1當(dāng)面積最大時,求m的取值,并求出的長度

2判斷是否為定值;若是,求出定值的大。蝗舨皇,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線 的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標(biāo)方程;

(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有8名奧運(yùn)會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各名,組成一個小組.

1被選中的概率;

2不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于某設(shè)備的使用年限和所支出的維修費(fèi)用(萬元),有如下的統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

(1)如由資料可知呈線形相關(guān)關(guān)系.試求:線形回歸方程;(,

(2)估計使用年限為10年時,維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1與y軸交于O,A兩點(diǎn),圓C2過O,A兩點(diǎn),且直線C2O恰與圓C1相切;

1求圓C2的方程。

2若圓C2上一動點(diǎn)M,直線MO與圓C1的另一交點(diǎn)為N,在平面內(nèi)是否存在定點(diǎn)P使得PM=PN始終成立,若存在,求出定點(diǎn)坐標(biāo),若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 的方程為,點(diǎn)的坐標(biāo)為.

)求過點(diǎn)且與直線平行的直線方程;

)求過點(diǎn)且與直線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,, .

1)求的值及數(shù)列的通項公式;

2)令, 數(shù)列的前項和為, 試比較的大小

3)令, 數(shù)列的前項和為, 求證: 對任意, 都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為非負(fù)實(shí)數(shù),函數(shù).

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)討論函數(shù)零點(diǎn)的個數(shù),并求出零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案