已知函數(shù)
(I)若
,判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(II)若函數(shù)在
內(nèi)存在極值,求實數(shù)m的取值范圍。
(I)當(dāng)
單調(diào)遞增;
當(dāng)
單調(diào)遞減。
(II)
試題分析:(I)顯然函數(shù)定義域為(0,+
)若m=1,
由導(dǎo)數(shù)運算法則知
令
當(dāng)
單調(diào)遞增;
當(dāng)
單調(diào)遞減。
(II)由導(dǎo)數(shù)運算法則知,
令
當(dāng)
單調(diào)遞增;
當(dāng)
單調(diào)遞減。
故當(dāng)
有極大值,根據(jù)題意
點評:本題主要考查函數(shù)的導(dǎo)數(shù)與單調(diào)區(qū)間,極值的關(guān)系,求單調(diào)區(qū)間時,注意單調(diào)區(qū)間是定義域的子區(qū)間
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
是常數(shù))在
處的切線方程為
,且
.
(Ⅰ)求常數(shù)
的值;
(Ⅱ)若函數(shù)
(
)在區(qū)間
內(nèi)不是單調(diào)函數(shù),求實數(shù)
的取值范圍;
(Ⅲ)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)若
,且
在區(qū)間
內(nèi)存在極值,求整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對于任意
,不等式
恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是R上的可導(dǎo)函數(shù),且滿足
,對任意的正實數(shù)
,下列不等式恒成立的是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
有極值,
(Ⅰ)求
的取值范圍;
(Ⅱ)求極大值點和極小值點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖是函數(shù)
的導(dǎo)函數(shù)
的圖象,對此圖象,有如下結(jié)論:
①在區(qū)間(-2,1)內(nèi)
是增函數(shù);
②在區(qū)間(1,3)內(nèi)
是減函數(shù);
③在
時,
取得極大值;
④在
時,
取得極小值。
其中正確的是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
,設(shè)函數(shù)
(1)若
,求函數(shù)
在
上的最小值
(2)判斷函數(shù)
的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
求函數(shù)
在區(qū)間
上的最值.
查看答案和解析>>