已知函數(shù)處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
      ⑵
第一問中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分
⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,               …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 
                                               …………12分
.綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的單調(diào)減區(qū)間
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在上的可導(dǎo)函數(shù),當(dāng)時,恒成立,,則的大小關(guān)系為        (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),函數(shù)的導(dǎo)函數(shù)是,且是奇函數(shù),若曲線y = f(x)的某一切線斜率是,則切點的橫坐標(biāo)是(   )
A.ln2 B.–ln2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)恰好有兩個不同的零點,求的值。
(Ⅱ)若函數(shù)的圖象與直線相切,求的值及相應(yīng)的切點坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,現(xiàn)有一邊長為6的正方形鐵板,如果從鐵板的四個角各截出去一個相同的小正方形,做成一個長方體形的無蓋容器為使其容積最大,截下的小正方形邊長應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) f(x)=在[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點處的切線方程為,則的值為 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的導(dǎo)數(shù)=__________

查看答案和解析>>

同步練習(xí)冊答案