如圖,在C城周邊已有兩條公路l1,l2在點(diǎn)O處交匯.已知OC()kmAOB75°,AOC45°,現(xiàn)規(guī)劃在公路l1,l2上分別選擇AB兩處為交匯點(diǎn)(異于點(diǎn)O)直接修建一條公路通過C城.設(shè)OAx km,OBy km.

(1)y關(guān)于x的函數(shù)關(guān)系式并指出它的定義域;

(2)試確定點(diǎn)A,B的位置,使OAB的面積最。

 

1y(x2)24(1) km2.

【解析】(1)因?yàn)?/span>AOC的面積與BOC的面積之和等于AOB的面積,所以x()sin 45°y()·sin 30°xysin 75 °,

x()y()xy

所以y(x2)

(2)AOB的面積Sxysin 75°xy× (x24)≥×84(1)

當(dāng)且僅當(dāng)x4時(shí)取等號,此時(shí)y4.

OA4 kmOB4km時(shí),OAB面積的最小值為4(1) km2

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用9練習(xí)卷(解析版) 題型:填空題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若,則________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用5練習(xí)卷(解析版) 題型:填空題

關(guān)于x的方程x33x2a0有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用3練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)x2bxc(bcR),對任意的xR,恒有f′(x)≤f(x)

(1)證明:當(dāng)x≥0時(shí),f(x)≤(xc)2

(2)若對滿足題設(shè)條件的任意b,c,不等式f(c)f(b)≤M(c2b2)恒成立,求M的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用3練習(xí)卷(解析版) 題型:填空題

已知a>0x,y滿足約束條件z2xy的最小值為1,則a等于________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用2練習(xí)卷(解析版) 題型:填空題

一塊形狀為直角三角形的鐵皮,兩直角邊長分別為40 cm60 cm,現(xiàn)要將它剪成一個(gè)矩形,并以此三角形的直角為矩形的一個(gè)角,則矩形的最大面積是________cm2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用22練習(xí)卷(解析版) 題型:解答題

如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A點(diǎn)作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OPOA2

(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,且交圓OB點(diǎn).過B點(diǎn)的切線交直線ONK.證明:OKM90°.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題

某校從高一年級學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測試成績分成6組:[40,50)[50,60),[60,70)[70,80),[80,90)[90,100]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.已知高一年級共有學(xué)生600名,據(jù)此估計(jì),該模塊測試成績不少于60分的學(xué)生人數(shù)為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用16練習(xí)卷(解析版) 題型:解答題

如圖,四棱柱ABCDA1B1C1D1中,側(cè)棱A1A底面ABCDABDC,ABADADCD1,AA1AB2E為棱AA1的中點(diǎn).

(1)證明B1C1CE;

(2)求二面角B1CEC1的正弦值;

(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

 

查看答案和解析>>

同步練習(xí)冊答案