精英家教網 > 高中數學 > 題目詳情

已知橢圓上的任意一點到它兩個焦點的距離之和為,且它的焦距為2.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線與橢圓交于不同兩點,且線段的中點不在圓內,求實數的取值范圍.

 

【答案】

(Ⅰ)橢圓的方程為

(Ⅱ)實數的取值范圍為

【解析】本試題主要是考查了直線與橢圓的位置關系的綜合運用。

(1)第一問中利用橢圓的性質,得到參數a,b,c的值。得到橢圓的方程。

(2)聯(lián)立方程組,結合韋達定理,得到線段AB的中點,然后利用點不在圓內得到參數m的范圍

 

練習冊系列答案
相關習題

科目:高中數學 來源:2014屆湖南省高二下學期第一次月考理科數學試卷(解析版) 題型:解答題

設橢圓的左、右焦點分別為,已知橢圓上的任意一點,滿足,過作垂直于橢圓長軸的弦長為3.

(1)求橢圓的方程;

(2)若過的直線交橢圓于兩點,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2013屆遼寧省盤錦市高三第二次階段考試數學試卷(解析版) 題型:解答題

(本小題滿分12分)已知橢圓上的任意一點到它的兩個焦點的距離之和為,且其焦距為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線與橢圓交于不同的兩點A,B.問是否存在以A,B為直徑

 的圓 過橢圓的右焦點.若存在,求出的值;不存在,說明理由.

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓數學公式上的任意一點到它的兩個焦點F1(-c,0),F2(c,0)(c>0)的距離之和為數學公式,且其焦距為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線x-y+m=0與橢圓C交于不同的兩點A,B.問是否存在以A,B為直徑的圓過橢圓的右焦點F2.若存在,求出m的值;不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省長春十一中高三(上)期中數學試卷(理科)(解析版) 題型:解答題

已知橢圓上的任意一點到它的兩個焦點F1(-c,0),F2(c,0)(c>0)的距離之和為,且其焦距為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線x-y+m=0與橢圓C交于不同的兩點A,B.問是否存在以A,B為直徑的圓過橢圓的右焦點F2.若存在,求出m的值;不存在,說明理由.

查看答案和解析>>

同步練習冊答案