設(shè)函數(shù)f(x)滿足f(n+1)=
2f(n)+n
2
(n∈N*),且f(1)=2,則f(20)為( 。
A、95B、97
C、105D、192
分析:由已知,f(n+1)=f(n)+
n
2
,即f(n+1)-f(n)=
n
2
,可用疊加法求f(n),f(20)即可求.
解答:解:∵f(n+1)=
2f(n)+n
2
,化簡(jiǎn)整理得,f(n+1)-f(n)=
n
2
,
f(2)-f(1)=
1
2

f(3)-f(2)=
2
2


f(n)-f(n-1)=
n-1
2
(n≥2)
以上各式疊加得,f(n)-f(1)=
1+2+…+(n-1)
2
=
n(n-1)
4

f(n)=
n(n-1)
4
+2
且對(duì)n=1也適合.
f(20)=
20×19
4
+2=97

故選B
點(diǎn)評(píng):本題考查疊加法求通項(xiàng).凡是形如a n+1-a n=f(n),且{f(n)}能求和,均可用疊加法求{an}通項(xiàng),
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足:對(duì)任意x∈R,都有f(x)=f(2-x)成立,且當(dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0(其中f'(x)為f(x)的導(dǎo)數(shù)).設(shè)a=f(0),b=f(
1
2
),c=f(3)
,則a、b、c三者的大小關(guān)系是( 。
A、a<b<c
B、c<a<b
C、c<b<a
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)滿足f(x+y)=f(x)+f(y)(x,y∈R),求證:
(1)f(0)=0;
(2)f(3)=3f(1);
(3)f(
1
2
)=
1
2
f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)滿足:對(duì)任意的x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]>0,則f(-3)與f(-π)兩個(gè)函數(shù)值較大的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)都成立,則稱函數(shù)f(x) 為“倍約束函數(shù)”.給出下列函數(shù),其中是“倍約束函數(shù)”的為


  1. A.
    f(x)=2
  2. B.
    f(x)=數(shù)學(xué)公式
  3. C.
    f(x)=x2
  4. D.
    f(x)是定義在R上的奇函數(shù),且滿足對(duì)一切實(shí)數(shù)x1,x2,均有|f(x1)-f(x2)|≤2|x1-x2|成立

查看答案和解析>>

同步練習(xí)冊(cè)答案