已知函數(shù)f(x)=,x∈[1,+∞]
(1)當(dāng)a=時,求函數(shù)f(x)的最小值;
(2)若對任意x∈[1,+∞,f(x)>0恒成立,試求實數(shù)a的取值范圍.
解析: (1)當(dāng)a=時,f(x)=x++2,x∈1,+∞)
設(shè)x2>x1≥1,則f(x2)-f(x1)=x2+=(x2-x1)+=(x2-x1)(1-)
∵x2>x1≥1,∴x2-x1>0,1->0,則f(x2)>f(x1)
可知f(x)在[1,+∞)上是增函數(shù).∴f(x)在區(qū)間[1,+∞上的最小值為f(1)=.
(2)在區(qū)間[1,+∞上,f(x)=>0恒成立x2+2x+a>0恒成立
設(shè)y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函數(shù),
當(dāng)x=1時,ymin=3+a,于是當(dāng)且僅當(dāng)ymin=3+a>0時函數(shù)f(x)>0恒成立.故a>-3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2x-2-x | 2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x-1 | x+a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com