已知是橢圓上的一動點,且與橢圓長軸兩頂點連線的斜率之積為,則橢圓離心率為 (    )
A. B.C.D.
B
設(shè),則,化簡得,又在橢圓上,所以,所以,故
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本小題滿分12分)
已知橢圓的長軸長為,且點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓右焦點的直線交橢圓于兩點,若以為直徑的圓過原點,
求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E的長軸的一個端點是拋物線的焦點,離心率是
(1)求橢圓E的方程;
(2)過點C(—1,0),斜率為k的動直線與橢圓E相交于A、B兩點,請問x軸上是否存在點M,使為常數(shù)?若存在,求出點M的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知雙曲線的中心在原點,對稱軸為坐標(biāo)軸,焦點在x軸上,兩準(zhǔn)線間的距離為,并且與直線相交所得線段中點的橫坐標(biāo)為,求這個雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓經(jīng)過點,離心率為
(1)求橢圓的方程;
(2)設(shè)過定點M(0,2)的直線與橢圓交于不同的兩點、,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點是F1,F(xiàn)2,如果橢圓上一點P滿足PF1⊥PF2下面結(jié)論正確的是(   )
A.P點有兩個B.P點有四個
C.P點不一定存在D.P點一定不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓G的中心在坐標(biāo)原點,長軸在x軸上,離心率為,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為       __

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)分別為橢圓的焦點,點在橢圓上,若;則點的坐標(biāo)是 _________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

P為橢圓上一點,F(xiàn)1、F2是橢圓的左、右焦點,若使△F1PF2為直角三角形的點P共有8個,則橢圓離心率的取值范圍是            

查看答案和解析>>

同步練習(xí)冊答案