【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段,的中點,

I)在棱上找一點,使得平面平面,請寫出點的位置,并加以證明;

(Ⅱ)求點到平面的距離.

【答案】(Ⅰ)在棱上取其中點為,則平面平面,證明見解析(Ⅱ)

【解析】

I)在棱上取其中點為,利用線線平行證明面面平行.

(Ⅱ)證平面,點到平面的距離轉(zhuǎn)化為點到平面的距離,再利用等積法求出距離.

I)在棱上取其中點為,則平面平面

證明如下:取中點,連接,

在正方形中,中點,中點

,平面平面

平面,

又∵中點,中點,

,同理可證平面,

∴平面平面

(Ⅱ)由(I)問平面平面平面,

到平面的距離等于到平面的距離,

平面,∴,

,在,

平面,∴

又∵,,

平面平面

平面,又∵平面,

,故

,∴為直角三角形,

,

設(shè)到平面的距離為,則,

,∴到平面的距離

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解本公司職員的早餐費用情況,抽樣調(diào)査了100位職員的早餐日平均費用(單位:元),得到如圖所示的頻率分布直方圖,圖中標(biāo)注的數(shù)字模糊不清.

1)試根據(jù)頻率分布直方圖求的值,并估計該公司職員早餐日平均費用的眾數(shù);

2) 已知該公司有1000名職員,試估計該公司有多少職員早餐日平均費用多于8元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓離心率為,點與橢圓的左、右頂點可以構(gòu)成等腰直角三角形.點C是橢圓的下頂點,經(jīng)過橢圓中心O的一條直線與橢圓交于A,B兩個點(不與點C重合),直線CA,CB分別與x軸交于點D,E

1)求橢圓的標(biāo)準(zhǔn)方程.

2)判斷的大小是否為定值,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱的底面是菱形,,,EM,N分別是,,的中點.

1)證明:平面

2)求點C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,, ,外接球的球心為,點是側(cè)棱上的一個動點.有下列判斷:

① 直線與直線是異面直線;②一定不垂直;

③ 三棱錐的體積為定值; ④的最小值為.

其中正確的序號序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市某機構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

合計

男性市民

女性市民

合計

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:

(i)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)討論的單調(diào)性;

2)當(dāng)時,若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=1200+ x3(萬元),已知產(chǎn)品單價P(萬元)與產(chǎn)品件數(shù)x滿足:p2= ,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元.

(1)設(shè)產(chǎn)量為x件時,總利潤為L(x)(萬元),求L(x)的解析式;

(2)產(chǎn)量x定為多少件時總利潤L(x)(萬元)最大?并求最大值(精確到1萬元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,ADBC,BC=2AD,EF分別為AD,BC的中點,AE=EF,.將四邊形ABFE沿EF折起,使平面ABFE⊥平面EFCD(如圖2),GBF的中點.

1)證明:ACEG;

2)在線段BC上是否存在一點H,使得DH∥平面ABFE?若存在,求的值;若不存在,說明理由;

3)求二面角D-AC-F的大。

查看答案和解析>>

同步練習(xí)冊答案