【題目】中,已知,D是邊AC上的一點,將沿BD折疊,得到三棱錐,若該三棱錐的頂點A在底面BCD的射影M在線段BC上,設,則x的取值范圍是(

A.B.C.D.

【答案】C

【解析】

由題意可得,折疊前在圖1中,AMBD垂足為N.設圖1A點在BC上的射影為M1,運動點D可得,當D點與C點無限接近時,點M與點M1無限接近,得到BMBM1.在圖2中,根據(jù)斜邊大于直角邊,可得BMAB,由此可得x的取值范圍.

將△ABD沿BD折起,得到三棱錐A-BCD,且點A在底面BCD的射影M在線段BC上,

如圖2,AM⊥平面BCD,則AMBD,過MMNBD,連接AN,則ANBD,

因此,折疊前在圖1中,AMBD,垂足為N.

在圖1中,過AAM1BCM1,運動點D,當D點與C點無限接近時,折痕BD接近BC,此時M與點M1無限接近;

在圖2中,由于ABRtABM的斜邊,BM是直角邊,因此BMAB

由此可得:BM1BMAB

因為△ABC中,AB2,BC2,∠ABC45°,由余弦定理可得AC2,

B M1

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質量指標會影響第二段生產(chǎn)成品的等級,具體見下表:

第一段生產(chǎn)的半成品質量指標

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.

(Ⅰ)以各組的中間值估計為該組半成品的質量指標,估算流水線第一段生產(chǎn)的半成品質量指標的平均值;

(Ⅱ)將頻率估計為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;

(Ⅲ)現(xiàn)在市面上有一種設備可以安裝到流水線第一段,價格是萬元,使用壽命是年,安裝這種設備后,流水線第一段半成品的質量指標服從正態(tài)分布,且不影響產(chǎn)量.請你幫該公司作出決策,是否要購買該設備?說明理由.

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))在上有兩個零點,則的范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(,)的圖象關于直線對稱,兩個相鄰的最高點之間的距離為

(1)求的解析式;

(2)在△中,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,是兩條不同的直線,,是三個不同的平面,給出下列四個命題:

①若,,則

②若,,,則

③若,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,是橢圓上一點,軸,.

1)求橢圓的標準方程;

2)若直線與橢圓交于兩點,線段的中點為為坐標原點,且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若,求實數(shù)的取值范圍;

(2)設函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知若,則稱的原函數(shù),此時所有的原函數(shù)為,其中為常數(shù),如:,則為常數(shù)).現(xiàn)已知函數(shù)的導函數(shù)為且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若存在單調增區(qū)間,求的取值范圍;

(Ⅱ)是否存在實數(shù),使得方程在區(qū)間內有且只有兩個不相等的實數(shù)根?若存在,求出的取值范圍?若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案