【題目】某家用電器公司生產(chǎn)一新款熱水器,首先每年需要固定投入 200萬元,其次每生產(chǎn)1百臺,需再投入0.9萬元.假設該公司生產(chǎn)的該款熱水器當年能全部售出,但每銷售1百臺需另付運輸費0.1萬元.根據(jù)以往的經(jīng)驗,年銷售總額(萬元)關(guān)于年產(chǎn)量(百臺)的函數(shù)為.

(1)將年利潤表示為年產(chǎn)量的函數(shù);

(2)求該公司生產(chǎn)的該款熱水器的最大年利潤及相應的年產(chǎn)量.

【答案】(1) ;(2) 當年產(chǎn)量為300百臺時,公司所獲年利潤最大,最大年利潤為250萬元..

【解析】試題分析:(1)根據(jù)題意年銷售額的表達式和利潤表達式,等于掙得錢減去花的錢可得,(2根據(jù)第一問的表達式,可知求分段函數(shù)的值域最值即可,根據(jù)二次函數(shù)的表達式和一次函數(shù)的單調(diào)性的結(jié)果即可。

(1)當時,

,

時, ,

.

(2)當時, ,

時, ,

時, ,

∴當時, ,

∴當年產(chǎn)量為300百臺時,公司所獲年利潤最大,最大年利潤為250萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , .

(1)若存在極值點1,求的值;

(2)若存在兩個不同的零點,求證: 為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中點,N是BC的中點,點P在線段A1B1上運動.

(Ⅰ)求證:PN⊥AM;

(Ⅱ)試確定點P的位置,使直線PN和平面ABC所成的角

最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)有兩個零點,求滿足條件的最小正整數(shù)的值;

(3)若方程,有兩個不相等的實數(shù)根,比較與0的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,且是偶函數(shù).

(1)求實數(shù)的值;

(2)證明:函數(shù)上是減函數(shù);

(3)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實數(shù),使得,試判斷的大小關(guān)系并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修:不等式選講

已知函數(shù)f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017屆云南曲靖一中高三文上學期月考四】已知函數(shù)

(1)若的極值點,的極大值

(2)求的范圍,使得恒成立

查看答案和解析>>

同步練習冊答案