【題目】有2008名學(xué)生參加大型公益活動.若有兩名學(xué)生互相認識,則將這兩名學(xué)生看作一個合作小組.
(1)求合作小組數(shù)目的最小值,使得無論學(xué)生認識的情況如何,都存在三名學(xué)生,他們兩兩都在一個合作小組;
(2)若合作小組數(shù)目為,證明:存在四名學(xué)生、、、,使得和、和、和、和分別為一個合作小組.
【答案】(1) (2)見解析
【解析】
(1)設(shè).
下面證明:.
將學(xué)生分為兩大組,每大組中有名學(xué)生,且每大組中的學(xué)生互相不認識,而每個學(xué)生都和另外一個大組中的每個學(xué)生認識,則可以組成個合作小組,但是不存在三名學(xué)生,他們兩兩都在一個合作小組.
若有個合作小組,設(shè)學(xué)生認識的學(xué)生最多,且認識個學(xué)生,分別設(shè)為,,…,.
若存在、滿足與互相認識,則、、滿足條件;
若,,…,中任意兩名學(xué)生都不在一個合作小組,則合作小組的數(shù)目不超過.矛盾.
因此,.
(2)設(shè),,名學(xué)生分別為,,…,,他們認識學(xué)生的數(shù)目分別為,,…,,則.
考慮每個學(xué)生認識的學(xué)生中所有可能的兩個小組,其總數(shù)為
.
所以,存在一個兩人小組和,他們都認識和.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點是,點在軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.
(1)求橢圓的方程;
(2)設(shè)過點的直線與交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行“新冠肺炎”防控知識閉卷考試比賽,總分獲得一等獎、二等獎、三等獎的代表隊人數(shù)情況如表,其中一等獎代表隊比三等獎代表隊多10人.該校政教處為使頒獎儀式有序進行,氣氛活躍,在頒獎過程中穿插抽獎活動.并用分層抽樣的方法從三個代表隊中共抽取16人在前排就坐,其中二等獎代表隊有5人(同隊內(nèi)男女生仍采用分層抽樣)
名次 性別 | 一等獎 代表隊 | 二等獎 代表隊 | 三等獎 代表隊 |
男生 | ? | 30 | ◎ |
女生 | 30 | 20 | 30 |
(1)從前排就坐的一等獎代表隊中隨機抽取3人上臺領(lǐng)獎,用X表示女生上臺領(lǐng)獎的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
(2)抽獎活動中,代表隊員通過操作按鍵,使電腦自動產(chǎn)生[﹣2,2]內(nèi)的兩個均勻隨機數(shù)x,y,隨后電腦自動運行如圖所示的程序框圖的相應(yīng)程序.若電腦顯示“中獎”,則代表隊員獲相應(yīng)獎品;若電腦顯示“謝謝”,則不中獎.求代表隊隊員獲得獎品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若恒成立,求a的取值范圍;
(2)當(dāng)時,函數(shù)的圖像與直線是否有公共點?如果有,求出所有公共點;若沒有,請說明理由;
(3)當(dāng)時,有且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果數(shù)列的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱為“三角形”數(shù)列,對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”.
(1)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明是“三角形”數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生 育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
(2)若對年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):P
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):
已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;
(2)現(xiàn)有如下兩個方案供企業(yè)選擇:
方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;
方案2:企業(yè)與保險公司合作,企業(yè)負責(zé)職工保費的70%,職工個人負責(zé)保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.
請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是公比為q的等比數(shù)列.
(Ⅰ) 推導(dǎo)的前n項和公式;
(Ⅱ) 設(shè)q≠1, 證明數(shù)列不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且,點在二次函數(shù)的圖象上.
(1)試判斷數(shù)列是否為算術(shù)平方根遞推數(shù)列?若是,請說明你的理由;
(2)記,求證:數(shù)列是等比數(shù)列,并求出通項公式;
(3)在數(shù)列中依據(jù)某種順序從左至右取出其中的項,…,把這些項重新組成一個新數(shù)列,….若數(shù)列是首項為、公比為的無窮等比數(shù)列,且數(shù)列各項的和為,求正整數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com