如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn).

(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,則側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說(shuō)明理由.

(Ⅰ)只需證明;(Ⅱ)只需使得平面

解析試題分析:解:(Ⅰ)連BD,設(shè)AC交BD于O,由題意。在正方形ABCD中,,所以,得.………………4分
(Ⅱ) 在棱SC上存在一點(diǎn)E,使
設(shè)正方形邊長(zhǎng),則。
,所以,
, 由,知,所以,
,故可在上取一點(diǎn),使,過的平行線與的交點(diǎn)即為,連BN。
中知,又由于,故平面,得,由于,故.………………12分
考點(diǎn):直線與平面垂直的判定定理;直線與平面平行的判定定理。
點(diǎn)評(píng):結(jié)合定理可解決此題。但第二小題屬于討論題目,相對(duì)較難。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,已知點(diǎn)B在以AC為直徑的圓上,SA⊥面ABC,AESBE,AFSCF.

(I)證明:SCEF;
(II)若求三棱錐SAEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,,,中點(diǎn),中點(diǎn),且為正三角形.

(1)求證:平面.
(2)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).
(1)求證:PB⊥DM;
(2)求CD與平面ADMN所成角的正弦值;
(3)在棱PD上是否存在點(diǎn)E,PE∶ED=λ,使得二面角C-AN-E的平面角為60o.存在求出λ值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點(diǎn).

(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖4,已知四棱錐,底面是正方形,,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),連接,.

(1)求證:;
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. 的中點(diǎn).

(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;
(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,在平行四邊形中,,將它們沿對(duì)角線折起,折后的點(diǎn)變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/4/dqotb1.png" style="vertical-align:middle;" />,且
 
(Ⅰ)求證:平面平面;
(Ⅱ)為線段上的一個(gè)動(dòng)點(diǎn),當(dāng)線段的長(zhǎng)為多少時(shí),與平面所成的角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)在四棱錐中,底面ABCD是邊長(zhǎng)為1的正方形,平面ABCD,PA=AB,M,N分別為PB,AC的中點(diǎn),
(1)求證:MN //平面PAD          (2)求點(diǎn)B到平面AMN的距離

查看答案和解析>>

同步練習(xí)冊(cè)答案