精英家教網 > 高中數學 > 題目詳情

如圖,在平面直角坐標系xOy中,過y軸正方向上一點C(0,c)任作一直線,與拋物線y=x2相交于AB兩點,一條垂直于x軸的直線,分別與線段AB和直線l:y=-c交于P,Q.

(1)若·=2,求c的值;

(2)若P為線段AB的中點,求證:QA為此拋物線的切線;

(3)試問(2)的逆命題是否成立?說明理由.

答案:
解析:

  解:(1)設過C點的直線為,所以,即,設A,,因為,所以

  ,即

  所以,即所以

  (2)設過Q的切線為,,所以,即,它與的交點為M,又,所以Q,因為,所以,所以M,所以點M和點Q重合,也就是QA為此拋物線的切線.

  (3)(2)的逆命題是成立,由(2)可知Q,因為PQ軸,所以

  因為,所以P為AB的中點.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在△OAB中,點P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點,且
OP
=x
OA
+y
OB
則在直角坐標平面內,實數對(x,y)所示的區(qū)域在直線y=4的下側部分的面積是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

1、如圖,在直角坐標平面內有一個邊長為a,中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數)與正六邊形交于M、N兩點,記△OMN的面積為S,則函數S=f(t)的奇偶性為
偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在直角坐標平面內有一個邊長為a、中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數)與正六邊形交于M、N兩點,記△OMN的面積為S,則函數S=f(t)的奇偶性為( 。
A、偶函數B、奇函數C、不是奇函數,也不是偶函數D、奇偶性與k有關

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標平面內,射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內的概率是
1
6
1
6

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平面直角坐標中,一定長m的線段,其端點AB分別在x軸、y軸上滑動,設點M滿足(λ是大于0,且不等于1的常數).

試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數列?若存在,求出E、F的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案