【題目】二次函數(shù)y=ax2+bx+c(x∈R)的部分對應(yīng)值如表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 |
y | ﹣6 | 0 | 4 | 6 | 6 | 4 | 0 | ﹣6 |
則一元二次不等式ax2+bx+c>0的解集是( )
A.{x|x<﹣2,或x>3}
B.{x|x≤﹣2,或x≥3}
C.{x|﹣2<x<3}
D.{x|﹣2≤x≤3}
【答案】C
【解析】解:根據(jù)二次函數(shù)y=ax2+bx+c(x∈R)的部分對應(yīng)值表知,
a<0,且x=﹣2時,y=0;
x=3時,y=0;
∴一元二次不等式ax2+bx+c>0的解集是{x|﹣2<x<3}.
故選:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解一元二次不等式(求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時,小于取中間,大于取兩邊).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實(shí)數(shù)m的取值集合B;
(2)設(shè)不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某位同學(xué)在2015年5月進(jìn)行社會實(shí)踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了5月1日至5月5日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):
日 期 | 5月1日 | 5月2日 | 5月3日 | 5月4日 | 5月5日 |
平均氣溫x(°C) | 9 | 10 | 12 | 11 | 8 |
銷量y(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若從這五組數(shù)據(jù)中隨機(jī)抽出2組,求抽出的2組數(shù)據(jù)不是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程 = x+ .
(參考公式: = , = ﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京是我國嚴(yán)重缺水的城市之一.為了倡導(dǎo)“節(jié)約用水,從我做起”,小明在他所在學(xué)校的2000名同學(xué)中,隨機(jī)調(diào)查了40名同學(xué)家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(Ⅰ)給出圖中實(shí)數(shù)a的值;
(Ⅱ)根據(jù)樣本數(shù)據(jù),估計(jì)小明所在學(xué)校2000名同學(xué)家庭中,月均用水量低于8噸的約有多少戶;
(Ⅲ)在月均用水量大于或等于10噸的樣本數(shù)據(jù)中,小明決定隨機(jī)抽取2名同學(xué)家庭進(jìn)行訪談,求這2名同學(xué)中恰有1人所在家庭的月均用水量屬于[10,12)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個不重合的平面α,β和兩條不同直線m,n,則下列說法正確的是( )
A.若m⊥n,n⊥α,mβ,則α⊥β
B.若α∥β,n⊥α,m⊥β,則m∥n
C.若m⊥n,nα,mβ,則α⊥β
D.若α∥β,nα,m∥β,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需要增加投入100元,最大月產(chǎn)量是400臺.已知總收益滿足函數(shù) ,其中x是儀器的月產(chǎn)量(單位:臺).
(1)將利潤y(單位:元)表示為月產(chǎn)量x(單位:臺)的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤為多少?(總收益=總成本+利潤).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對任意x∈[1,e],都有g(shù)(x)≥﹣x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com