【題目】如圖,D是AC的中點(diǎn),四邊形BDEF是菱形,平面平面ABC,,,.
若點(diǎn)M是線段BF的中點(diǎn),證明:平面AMC;
求平面AEF與平面BCF所成的銳二面角的余弦值.
【答案】(1)見(jiàn)解析;(2).
【解析】
試題分析:(1)連接,. .由四邊形為菱形,可證.由平面平面,可證平面.即可證明平面;
2)設(shè)線段的中點(diǎn)為,連接.易證平面.以為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系.求出相應(yīng)點(diǎn)及向量的坐標(biāo),求得平面,平面的法向量,.。利用空間向量夾角公式可求得平面與平面所成的銳二面角的余弦值.
試題解析:
(1)連接,∵四邊形為菱形,且,
∴為等邊三角形.
∵為的中點(diǎn),∴.
∵,,又是的中點(diǎn),
∴.
∵平面平面,平面平面,平面,
∴平面.
又平面,∴.
由,,,
∴平面.
(2)設(shè)線段的中點(diǎn)為,連接.易證平面.以為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系.則,,,,.
∴,,,.
設(shè)平面,平面的法向量分別為,.
由 .
解得.
取,∴.
又由 解得.
取,∴.
∵ .
∴平面與平面所成的銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)均為2,平面平面, , 為的中點(diǎn).
(1)證明: ;
(2)若是棱的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是雙曲線的兩個(gè)焦點(diǎn),圓與雙曲線位于軸上方的兩個(gè)交點(diǎn)分別為,若,則雙曲線的離心率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱的側(cè)棱與底面垂直,,,,分別是,的中點(diǎn),點(diǎn)在直線上,且.
(Ⅰ)證明:無(wú)論取何值,總有;
(Ⅱ)當(dāng)取何值時(shí),直線與平面所成的角最大?并求該角取最大值時(shí)的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底, 為常數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)對(duì)于函數(shù)和,若存在常數(shù),對(duì)于任意,不等式都成立,則稱(chēng)直線是函數(shù)的分界線,設(shè),問(wèn)函數(shù)與函數(shù)是否存在“分界線”?若存在,求出常數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在貫徹中共中央國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位定點(diǎn)幫扶甲、乙兩個(gè)村各50戶(hù)貧困戶(hù).為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶(hù)村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶(hù)的貧困指標(biāo)和,制成下圖,其中“”表示甲村貧困戶(hù),“”表示乙村貧困戶(hù).
若,則認(rèn)定該戶(hù)為“絕對(duì)貧困戶(hù)”,若,則認(rèn)定該戶(hù)為“相對(duì)貧困戶(hù)”,若,則認(rèn)定該戶(hù)為“低收入戶(hù)”;
若,則認(rèn)定該戶(hù)為“今年能脫貧戶(hù)”,否則為“今年不能脫貧戶(hù)”.
(1)從甲村50戶(hù)中隨機(jī)選出一戶(hù),求該戶(hù)為“今年不能脫貧的絕對(duì)貧困戶(hù)”的概率;
(2)若從所有“今年不能脫貧的非絕對(duì)貧困戶(hù)”中選3戶(hù),用表示所選3戶(hù)中乙村的戶(hù)數(shù),求的分布列和數(shù)學(xué)期望;
(3)試比較這100戶(hù)中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼(xiě)出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)計(jì)算裝置有兩個(gè)數(shù)據(jù)輸入端口I,II與一個(gè)運(yùn)算結(jié)果輸出端口III,當(dāng)I,II分別輸入正整數(shù)時(shí),輸出結(jié)果記為且計(jì)算裝置運(yùn)算原理如下:
①若I,II分別輸入則
②若I輸入固定的正整數(shù)II輸入的正整數(shù)增大則輸出的結(jié)果比原來(lái)增大
③若II輸入I輸入正整數(shù)增大則輸出結(jié)果為原來(lái)的倍.則(1) = 為正整數(shù));(2)(1)f(m,1)=__,(2)若由f(m,1)得出f(m,n),則滿(mǎn)足f(m,n)=30的平面上的點(diǎn)(m,n)的個(gè)數(shù)是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀如圖所示的程序框圖,解答下列問(wèn)題:
(1)求輸入的的值分別為時(shí),輸出的的值;
(2)根據(jù)程序框圖,寫(xiě)出函數(shù)()的解析式;并求當(dāng)關(guān)于的方程有三個(gè)互不相等的實(shí)數(shù)解時(shí),實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com