(本小題滿分14分)

設函數(shù)),其中

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)當時,求函數(shù)的極大值和極小值;

(Ⅲ)當時,是否存在函數(shù)圖像上兩點以及函數(shù)圖像上兩點,使得以這四點為頂點的四邊形ABCD滿足如下條件:1四邊形ABCD是平行四邊形;2軸;3。若存在,指出四邊形ABCD的個數(shù);若不存在,說明理由。

(Ⅰ)當時,,得,且,

所以,曲線在點處的切線方程是,

整理得

(Ⅱ)解:,

,解得.  

由于,以下分兩種情況討論.

(1)若,當變化時,的正負如下表:

因此,函數(shù)處取得極小值,且;

函數(shù)處取得極大值,且

(2)若,當變化時,的正負如下表:

因此,函數(shù)處取得極小值,且

函數(shù)處取得極大值,且

(Ⅲ)若存在滿足題意的四邊形ABCD,則方程至少有兩個相異實根,且每個實根對應一條垂直于x軸且與圖像均相交的的線段,這些線段長度均相等。

1時,,令,

   令,得

由表格知,的極大值,的極大值,而  ,故的圖像與x軸有且只有一個交點,有且只有一個零點。

2時,,令,,

由1知的極大值,的極大值,而  ,故的圖像與x軸有三個交點,有三個零點。

由12知,方程有四個不同的實根,從小到大依次記為,這四個根對應的四條線段中的每兩條對應一個平行四邊形ABCD,共有6個,所以滿足題意的平行四邊形ABCD有6個。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案