已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.
解:(Ⅰ)設(shè)P(x,y)是曲線C上任意一點(diǎn),那么點(diǎn)P(x,y)滿足:

化簡得.
(Ⅱ)設(shè)過點(diǎn)M(m,0)(m>0)的直線l與曲線C的交點(diǎn)為A,B
設(shè)l的方程為x=ty+m,由,△=16(+m)>0,
于是
。
=+1+<0②
,于是不等式②等價(jià)于


由①式,不等式③等價(jià)于

對任意實(shí)數(shù)t,的最小值為0,所以不等式④對于一切t成立等價(jià)于
,即。
由此可知,存在正數(shù)m,對于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有,且m的取值范圍。
(1)由題意知曲線C上的點(diǎn)到F(1,0)的距離與到直線x=-1的距離相等.
可確定其軌跡是拋物線,即可求出其方程為y2=4x.
(2)設(shè)過點(diǎn)M的直線方程為x=ty+m,然后與拋物線方程聯(lián)立,消去x,利用韋達(dá)定理表示出,再證明其小于零即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與雙曲線共焦點(diǎn),則橢圓的離心率的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓(常數(shù))的左右焦點(diǎn)分別為,是直線上的兩個(gè)動點(diǎn),
(1)若,求的值;
(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與拋物線有且僅有一個(gè)公共點(diǎn),并且過點(diǎn)的直線方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點(diǎn)F(0,),動圓P經(jīng)過點(diǎn)F且和直線y=相切,記動圓的圓心P的軌跡為曲線W.
⑴求曲線W的方程;⑵過點(diǎn)F作相互垂直的直線,,分別交曲線W于A,B和C,D.①求四邊形ABCD面積的最小值;②分別在A,B兩點(diǎn)作曲線W的切線,這兩條切線的交點(diǎn)記為Q,求證:QA⊥QB,且點(diǎn)Q在某一定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(0,1)、B(0,-1)、C(1,0),動點(diǎn)P滿足·=k||2.
(1) 求動點(diǎn)P的軌跡方程,并說明方程表示的曲線.
(2) 當(dāng)k=2時(shí),求|2|的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓的右焦點(diǎn)引直線,與的右準(zhǔn)線交于點(diǎn),與交于兩點(diǎn),與軸交于點(diǎn),若,則的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線的離心率,右焦點(diǎn),方程的兩個(gè)根分別為,,則點(diǎn)
A.圓內(nèi)B.圓
C.圓D.以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案