已知集合M={-1,0,1},N={x|x=a2,a∈M},則集合M與集合N關(guān)系是( 。
分析:先求出集合N,然后利用集合M,N元素的關(guān)系確定集合M與集合N關(guān)系.
解答:解:因為M={-1,0,1},a∈M,所以a=-1,0,1,所以N={x|x=a2,a∈M}={x|x=0或x=1}={0,1}.
所以集合M與集合N關(guān)系是M?N,選C.
故選C.
點評:本題的考點是兩個集合的關(guān)系,判斷集合之間的關(guān)系主要是通過元素的關(guān)系來判斷的.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

1、已知集合M={1,2,3,5},集合N={3,4,5},則M∩N=
{3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,1,3,5}和N={-1,1,2,4}.設(shè)關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1(a,b∈R).
(Ⅰ)若b=1時,從集合M取一個數(shù)作為a的值,求方程f(x)=0有解的概率;
(Ⅱ)若從集合M和N中各取一個數(shù)作為a和b的值,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,0,1,2},從集合M中有放回地任取兩元素作為點P的坐標.
(1)寫出這個試驗的所有基本事件,并求出基本事件的個數(shù);
(2)求點P落在坐標軸上的概率;
(3)求點P落在圓x2+y2=4內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•邯鄲二模)已知集合M⊆{1,2,3,4},且M∩{1,2}={1,2},則集合M的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,1},N={x|
1
4
2x-1<2,x∈Z}
,則M∩N=(  )

查看答案和解析>>

同步練習冊答案