某高校共有學(xué)生15 000人,其中男生10 500人,女生4 500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4], (4,6], (6,8], (8,10], (10,12],估計(jì)該校學(xué)生每周平均體育運(yùn)動時間超過4小時的概率;

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4小時,請完成每周平均體育運(yùn)動時間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”.
附:

P(K2≥k0)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
 

(1) 90;(2) 0.75;(3) 有.

解析試題分析:(1)由分層抽樣方法可知每層應(yīng)抽取的比例相同且為,所以女生應(yīng)抽取人數(shù)就等于女生總?cè)藬?shù)4 500 乘以抽取比例;(2) 該校學(xué)生每周平均體育運(yùn)動時間超過4小時的概率等于1減去[0,2],(2,4]矩形方塊的高度之和乘以組距2; (3)首先應(yīng)計(jì)算出在樣本數(shù)據(jù)的300人中,每周平均體育運(yùn)動時間超過4小時的男生人數(shù)和女生人數(shù),列出列聯(lián)表,然后根據(jù)公式計(jì)算出的觀測值,如果的觀測值大于3.841,則就有有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”;否則就沒有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”.
試題解析:(1) ,所以應(yīng)收集90位女生的樣本數(shù)據(jù)。
(2)由頻率分布直方圖得1-2×(0.100+0.025)=0.75,所以該校學(xué)生每周平均體育運(yùn)動時間超過4小時的概率的估計(jì)值為0.75。
(3)由(2)知,300位學(xué)生中有300×0.75=225人的每周平均體育運(yùn)動時間超過4小時,75人的每周平均體育運(yùn)動時間不超過4小時,又因?yàn)闃颖緮?shù)據(jù)中有210份是關(guān)于男生的,90份是關(guān)于女生的,所以每周平均體育運(yùn)動時間與性別列聯(lián)表如下:
每周平均體育運(yùn)動時間與性別列聯(lián)表。

 
男生
女生
總計(jì)
每周平均體育運(yùn)動時間
不超過4小時
45
30
75
每周平均體育運(yùn)動時間
超過4小時
165
60
225
總計(jì)
210
90
300
 
結(jié)合列聯(lián)表可算得.所以,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”.
考點(diǎn):1.分層抽樣;2. 頻率分布直方圖;3.獨(dú)立性檢驗(yàn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時)
(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動時間超過4個小時的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4個小時.請完成每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”.

P(K2≥k0)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
 
附:K2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
20
5
25
女生
10
15
25
合計(jì)
30
20
50
 
(1)用分層抽樣的方法在喜歡打藍(lán)球的學(xué)生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

隨機(jī)抽取某中學(xué)甲班10名同學(xué),他們的身高(單位:cm)數(shù)據(jù)是
;乙班10名同學(xué),他們的身高(單位:cm)數(shù)據(jù)是
(1)畫出甲、乙兩班的莖葉圖,并說明莖葉圖有什么優(yōu)點(diǎn)和缺點(diǎn)?
(2)根據(jù)莖葉圖判斷哪個班的平均身高較高(不必計(jì)算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):

由散點(diǎn)圖可知,銷售量與價格之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是;
(1)求的值;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價仍然服從線性回歸直線方程中的關(guān)系,且該產(chǎn)品的成本是每件4元,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入一成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某單位有50名職工,現(xiàn)要從中抽取10名職工,將全體職工隨機(jī)按1~50編號,并按編號順序平均分成10組,按各組內(nèi)抽取的編號依次增加5進(jìn)行系統(tǒng)抽樣.

(1)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;
(2)分別統(tǒng)計(jì)這10名職工的體重(單位:公斤),獲得體重?cái)?shù)據(jù)的莖葉圖如圖所示,求該樣本的方差;
(3)在(2)的條件下,從這10名職工中隨機(jī)抽取兩名體重不輕于73公斤(≥73公斤)的職工,求體重為76公斤的職工被抽取到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30 min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個車間的產(chǎn)品較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小區(qū)統(tǒng)計(jì)部門隨機(jī)抽查了區(qū)內(nèi)名網(wǎng)友4月1日這天的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表(圖(1)).網(wǎng)購金額超過千元的顧客被定義為“網(wǎng)購紅人”,網(wǎng)購金額不超過千元的顧客被定義為“非網(wǎng)購紅人”.已知“非網(wǎng)購紅人”與“網(wǎng)購紅人”人數(shù)比恰為.
(1)確定的值,并補(bǔ)全頻率分布直方圖(圖(2)).
(2)為進(jìn)一步了解這名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購紅人”和“網(wǎng)購紅人”中用分層抽樣的方法確定人,若需從這人中隨機(jī)選取人進(jìn)行問卷調(diào)查,設(shè)為選取的人中“網(wǎng)購紅人”的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題


某市高三數(shù)學(xué)抽樣考試中,對90分以上
(含90分)的成績進(jìn)行統(tǒng)計(jì),其頻率分布圖
如圖所示,若130—140分?jǐn)?shù)段的人數(shù)為90人,
則90—100分?jǐn)?shù)段的人數(shù)為_______

查看答案和解析>>

同步練習(xí)冊答案