精英家教網 > 高中數學 > 題目詳情
(2013•杭州一模)設雙曲線
x2
4
-
y2
3
=1的左,右焦點分別為F1F2,過F1的直線l交雙曲線左支于A,B兩點,則|BF2|+|AF2|的最小值為(  )
分析:根據雙曲線的標準方程可得:a=2,再由雙曲線的定義可得:|AF2|-|AF1|=2a=4,|BF2|-|BF1|=2a=4,所以得到|AF2|+|BF2|-(|AF1|+|BF1|)=8,再根據A、B兩點的位置特征得到答案.
解答:解:根據雙曲線的標準方程
x2
4
-
y2
3
=1可得:a=2,
由雙曲線的定義可得:|AF2|-|AF1|=2a=4…①,|BF2|-|BF1|=2a=4…②,
所以①+②可得:|AF2|+|BF2|-(|AF1|+|BF1|)=8,
因為過雙曲線的左焦點F1的直線交雙曲線的左支于A,B兩點,
所以|AF1|+|BF1|=|AB|,當|AB|是雙曲線的通經時|AB|最。
所以|AF2|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=8.
|BF2|+|AF2|=|AB|+8
2b2
a
+8
=11.
故選B.
點評:本題主要考查雙曲線的定義與雙曲線的簡單性質的應用,考查分析問題解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•杭州一模)若實數x,y滿足不等式組
y-x≥0
x+y-7≤0
,則2x+y的最大值為
21
2
21
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•杭州一模)設函數f(x)=|logax|(0<a<1)的定義域為[m,n](m<n),值域為[0,1],若n-m的最小值為
1
3
,則實數a的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•杭州一模)設等差數列{an}滿足:
sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6
sin(a4+a5)
=1,公差d∈(-1,0).若當且僅當n=9時,數列{an}的前n項和Sn取得最大值,則首項a1取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•杭州一模)設a∈R,則“a=4”是“直線l1:ax+2y-3=0與直線l2:2x+y-a=0平行”的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•杭州一模)設等差數列{an}的前n項和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),則必定有(  )

查看答案和解析>>

同步練習冊答案