【題目】如圖,F(xiàn)1、F2是雙曲線 =1(a>0)的左、右焦點,過F1的直線l與雙曲線交于點A、B,若△ABF2為等邊三角形,則△BF1F2的面積為(
A.8
B.8
C.8
D.16

【答案】C
【解析】解:根據(jù)雙曲線的定義,可得|BF1|﹣|BF2|=2a, ∵△ABF2是等邊三角形,即|BF2|=|AB|
∴|BF1|﹣|BF2|=2a,即|BF1|﹣|AB|=|AF1|=2a
又∵|AF2|﹣|AF1|=2a,
∴|AF2|=|AF1|+2a=4a,
∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°
∴|F1F2|2=|AF1|2+|AF2|2﹣2|AF1||AF2|cos120°
即4c2=4a2+16a2﹣2×2a×4a×(﹣ )=28a2 , 解之得c= a,
∴a2+24=7a2 , ∴a=2,
∴△BF1F2的面積為 = =8
故選:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】銳角△ABC中,角A,B,C的對邊分別為a,b,c,向量 , ,且
(1)求角B的大小;
(2)若sinAsinC=sin2B,求a﹣c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列選項中,說法正確的是(
A.若a>b>0,則
B.向量 (m∈R)共線的充要條件是m=0
C.命題“?n∈N* , 3n>(n+2)?2n1”的否定是“?n∈N* , 3n≥(n+2)?2n1
D.已知函數(shù)f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,則命題“若f(a)?f(b)<0,則f(x)在區(qū)間(a,b)內(nèi)至少有一個零點”的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點,AB⊥B1D.
(1)求證:平面ABB1A1⊥平面ABC;
(2)在線段CC1(不含端點)上,是否存在點E,使得二面角E﹣B1D﹣B的余弦值為 ?若存在,求出 的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖的程序框圖,運行相應的程序,則輸出的S值為( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設一組數(shù)據(jù)51,54,m,57,53的平均數(shù)是54,則這組數(shù)據(jù)的標準差等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有7名學科競賽優(yōu)勝者,其中語文學科是A1 , A2 , 數(shù)學學科是B1 , B2 , 英語學科是C1 , C2 , 物理學科是D1 , 從競賽優(yōu)勝者中選出3名組成一個代表隊,要求每個學科至多選出1名.
(1)求B1被選中的概率;
(2)求代表隊中有物理優(yōu)勝者的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了檢測某種產(chǎn)品的質(zhì)量(單位:千克),抽取了一個容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合計

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產(chǎn)品中隨機抽取一件,試估計這件產(chǎn)品的質(zhì)量少于25千克的概率.

查看答案和解析>>

同步練習冊答案