【題目】在多面體中,是邊長為的正方形,,平面平面,,。
(1)求證:平面;
(2)求直線與平面所成角的正弦值。
【答案】(1)見解析; (2).
【解析】
(1)推導出BE⊥BC,BD⊥CE,從而BE⊥平面ABCF,進而BE⊥AB,再由AB⊥CE,得AB⊥平面BCDE,從而CF⊥平面BCDE,進而CF⊥BD,由此能證明BD⊥平面CFE.(2)以B為原點,向量 分別為x軸,y軸,z軸的正方向建立空間直角坐標系,利用向量法求出直線EF與平面ADF所成角的正弦值.
(1)∵BCDE是正方形,∴BE⊥BC,BD⊥CE,
∵平面ABCF⊥平面BCDE,平面ABCF∩平面BCDE=BC,
∴BE⊥平面ABCF,∴BE⊥AB,∵AB⊥CE,BE∩CE=E,
∴AB⊥平面BCDE,∵CF∥AB,∴CF⊥平面BCDE,∴CF⊥BD,
∵CF∩CE=C,∴BD⊥平面CFE.
(2)以B為原點,向量分別為x軸,y軸,z軸的正方向建立空間直角坐標系,則E(0,2,0),F(2,0,1),A(0,0,2),D(2,2,0),則=(2,﹣2,1),=(﹣2,﹣2,2),=(0,﹣2,1),設平面ADF的法向量=(x,y,z),
則,取y=1,得=(1,1,2),
設直線EF與平面ADF所成角為θ,則sinθ===.
∴直線EF與平面ADF所成角的正弦值為.
科目:高中數學 來源: 題型:
【題目】某中學調查了某班全部45名同學參加書法社團和演講社團的情況,數據如下表:(單位:人)
參加書法社團 | 未參加書法社團 | |
參加演講社團 | 8 | 5 |
未參加演講社團 | 2 | 30 |
(1)從該班隨機選1名同學,求該同學至少參加一個社團的概率;
(2)在既參加書法社團又參加演講社團的8名同學中,有5名男同學A1,A2,A3,A4,A5,3名女同學B1,B2,B3.現從這5名男同學和3名女同學中各隨機選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:
(1)能否出現AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是一個的方格表,在每一個小方格內各填一個正整數.若中的一個方格表的所有數的和為10的倍數,則稱其為“好矩形”;若中的一個的小方格不包含于任何一個好矩形,則稱其為“壞格”.求中壞格個數的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 是平面內凸三十五邊形的35個頂點,且中任何兩點之間的距離不小于 . 證明:從這35個點中可以選出五個點,使得這五個點中任意兩點之間的距離不小于3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數
(1)若在處取得極值,確定的值,并求此時曲線在點處的切線方程;
(2)若在上為減函數,求的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓的離心率為,且右焦點到右準線的距離為1.過軸上一點 為常數,且的直線與橢圓交于兩點,與交于點,是弦的中點,直線與交于點.
(1)求橢圓的標準方程;
(2)試判斷以為直徑的圓是否經過定點?若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com