在直角梯形ABCD中,AD∥BC,數(shù)學(xué)公式,AB⊥BC,CD⊥BD,如圖1.把△ABD沿BD翻折,使得平面A′BD⊥平面BCD,如圖2.

(Ⅰ)求證:CD⊥A′B;
(Ⅱ)求三棱錐A′-BDC的體積;
(Ⅲ)在線段BC上是否存在點(diǎn)N,使得A′N⊥BD?若存在,請(qǐng)求出數(shù)學(xué)公式的值;若不存在,請(qǐng)說明理由.

滿分(12分).
解:(Ⅰ)∵平面A'BD⊥平面BCD,平面A'BD∩平面BCD=BD,CD⊥BD
∴CD⊥平面A'BD,…(2分)
又∵AB?平面A'BD,∴CD⊥A'B. …(4分)
(Ⅱ)如圖(1)在
∵AD∥BC,∴∠ADB=DBC=30°.

.…(6分)
如圖(2),在Rt△A'BD中,過點(diǎn)A'做A'E⊥BD于E,∴A'E⊥平面BCD.
,…(7分)
.…(8分)
(Ⅲ)在線段BC上存在點(diǎn)N,使得A'N⊥BD,理由如下:
如圖(2)在Rt△A'EB中,,
,…(9分)
過點(diǎn)E做EN∥DC交BC于點(diǎn)N,則,
∵CD⊥BD,∴EN⊥BD,…(10分)
又A'E⊥BD,A'E∩EN=E,∴BD⊥平面A'EN,
又A'N?平面A'EN,∴A'N⊥BD.
∴在線段BC上存在點(diǎn)N,使得A'N⊥BD,此時(shí).…(12分)
分析:(Ⅰ)通過已知條件證明CD⊥平面A'BD,然后證明CD⊥A'B.
(Ⅱ)在Rt△ABD中,推出∠ADB=DBC=30°.求出S△BDC,在Rt△A'BD中,過點(diǎn)A'做A'E⊥BD于E,說明A'E⊥平面BCD.說明是幾何體的高,即可求解.
(Ⅲ)在線段BC上存在點(diǎn)N,使得A'N⊥BD,過點(diǎn)E做EN∥DC交BC于點(diǎn)N,推出EN⊥BD,說明BD⊥平面A'EN,A'N⊥BD.即可證明在線段BC上存在點(diǎn)N,使得A'N⊥BD.
點(diǎn)評(píng):本小題主要考查直線與直線、直線與平面的位置關(guān)系、棱錐體積公式等基礎(chǔ)知識(shí),考查空間想象能力、推理論證能力及運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
12
AB=a(如圖),將△ADC沿AC折起,使D到D′.記面ACD′為α,面ABC為β,面BCD′為γ.
精英家教網(wǎng)
(1)若二面角α-AC-β為直二面角(如圖),求二面角β-BC-γ的大;
精英家教網(wǎng)
(2)若二面角α-AC-β為60°(如圖),求三棱錐D′-ABC的體積.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城二模)如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動(dòng)點(diǎn)P在△BCD內(nèi)運(yùn)動(dòng)(含邊界),設(shè)
AP
AB
AD
(α,β∈R)
,則α+β的取值范圍是
[1,
4
3
]
[1,
4
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直角梯形ABCD中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F(xiàn),G分別為線段PC,PD,BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD.
(1)求證:AP∥平面EFG;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,試給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=
3
2
,BC=
1
2
,橢圓以A、B為焦點(diǎn)且經(jīng)過點(diǎn)D.
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(Ⅱ)以該橢圓的長(zhǎng)軸為直徑作圓,判斷點(diǎn)C與該圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,CD=3,S△BCD=6,則梯形ABCD的面積為
8
8
,點(diǎn)A到BD的距離AH=
4
5
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案