已知點是雙曲線上一點,雙曲線兩個焦點間的距離等于4,則該雙曲線方程是___________.

試題分析:解:由題意知c=2.設(shè)該雙曲線方程是,把點P(2,-3)代入,得解得a2=1或a2=-16(舍),所以該雙曲線的方程為
點評:本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時要認真審題,仔細解答
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)拋物線的頂點在原點,準線方程為則拋物線的方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的焦點為,,在長軸上任取一點,過作垂直于的直線交橢圓于點,則使得的點的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓左焦點F且傾斜角為的直線交橢圓于A、B兩點,若,則橢圓的離心率為(    )
A.              B.              C.                D. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)、分別為橢圓的左、右兩個焦點.
(Ⅰ) 若橢圓C上的點、兩點的距離之和等于4, 寫出橢圓C的方程和離心率.;
(Ⅱ) 若M、N是橢圓C上關(guān)于原點對稱的兩點,點P是橢圓上除M、N外的任意一點, 當直線PM、PN的斜率都存在, 并記為、時, 求證: ·為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)為雙曲線的左右焦點,點P在雙曲線上,的平分線分線段的比為5∶1,則雙曲線的離心率的取值范圍是           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點為,點在此拋物線上,且,弦的中點在該拋物線準線上的射影為,則的最大值為(    )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知有相同兩焦點的橢圓和雙曲線,是它們的一個交點,則的形狀是 (   )
A.銳角三角形B.直角三角形C.鈍有三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(Ⅰ)判斷曲線的切線能否與曲線相切?并說明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求證:

查看答案和解析>>

同步練習冊答案