12之間依次插入n個(gè)正數(shù)使得這個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這個(gè)數(shù)的乘積記作,令.

(1)求數(shù)列{}的通項(xiàng)公式;

(2),設(shè),求.

 

【答案】

(1) ;(2) .

【解析】

試題分析:(1)由題意可設(shè)等比數(shù)列1, ,2的公比為,;根據(jù)題意可知 所以.

(2)(1)和已知,

再由錯(cuò)位相減法求得:,進(jìn)而求出.

試題解析:(1)法一:設(shè)等比數(shù)列1, ,2的公比為,; 2

所以 6

7

(2)由已知

由錯(cuò)位相減法求得: 10

13

(1)法二:設(shè)等比數(shù)列1, ,2的公比為,

,. . 4

, 7

(1)法三:又

由等比數(shù)列的性質(zhì)得: 7

考點(diǎn):1.等比數(shù)列的性質(zhì)應(yīng)用;2.錯(cuò)位相減法求數(shù)列前n項(xiàng)和.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的首項(xiàng)是1,公比為2,等差數(shù)列{bn}的首項(xiàng)是1,公差為1,把{bn}中的各項(xiàng)按照如下規(guī)則依次插入到{an}的每相鄰兩項(xiàng)之間,構(gòu)成新數(shù)列{cn}:a1,b1,a2,b2,b3,a3,b4,b5,b6,a4,…,即在an和an+1兩項(xiàng)之間依次插入{bn}中n個(gè)項(xiàng),則c2013=
1951
1951

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州市高三(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知等比數(shù)列{an}的首項(xiàng)是1,公比為2,等差數(shù)列{bn}的首項(xiàng)是1,公差為1,把{bn}中的各項(xiàng)按照如下規(guī)則依次插入到{an}的每相鄰兩項(xiàng)之間,構(gòu)成新數(shù)列{cn}:a1,b1,a2,b2,b3,a3,b4,b5,b6,a4,…,即在an和an+1兩項(xiàng)之間依次插入{bn}中n個(gè)項(xiàng),則c2013=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌外國語學(xué)校高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知等比數(shù)列{an}的首項(xiàng)是1,公比為2,等差數(shù)列{bn}的首項(xiàng)是1,公差為1,把{bn}中的各項(xiàng)按照如下規(guī)則依次插入到{an}的每相鄰兩項(xiàng)之間,構(gòu)成新數(shù)列{cn}:a1,b1,a2,b2,b3,a3,b4,b5,b6,a4,…,即在an和an+1兩項(xiàng)之間依次插入{bn}中n個(gè)項(xiàng),則c2013=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州市高三(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知等比數(shù)列{an}的首項(xiàng)是1,公比為2,等差數(shù)列{bn}的首項(xiàng)是1,公差為1,把{bn}中的各項(xiàng)按照如下規(guī)則依次插入到{an}的每相鄰兩項(xiàng)之間,構(gòu)成新數(shù)列{cn}:a1,b1,a2,b2,b3,a3,b4,b5,b6,a4,…,即在an和an+1兩項(xiàng)之間依次插入{bn}中n個(gè)項(xiàng),則c2013=   

查看答案和解析>>

同步練習(xí)冊答案