已知函數(shù)f(x)=
log2x,x>0
2x,x≤0
若f(a)=
1
2
,則a=______.
當a>0時,log2a=
1
2

∴a=
2
,
當a≤0時,2a=
1
2
=2-1,
∴a=-1.
∴a=-1或
2

故答案為:-1或
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

定義域為(0,+∞)的函數(shù)f(x)滿足f(ex)=x,則f(5)的值為( 。
A.e5B.log5eC.log5eD.ln5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=loga
1-x
1+x
(a>0,且a≠1)

(1)求f(
1
2012
)+f(-
1
2012
)
的值;
(2)當x∈(-t,t](其中t∈(-1,1),且t為常數(shù))時,f(x)是否存在最小值,如果存在求出最小值;如果不存在,請說明理由;
(3)當f(x-2)+f(4-3x)≥0時,求滿足不等式f(x-2)+f(4-3x)≥0的x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=
x2+2
x-1
(x>1)的最小值是( 。
A.2
3
+2
B.2
3
-2
C.2
3
D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)與g(x)的定義域均為非負實數(shù)集,對任意x≥0,規(guī)定f(x)*g(x)=minf(x),g(x),若f(x)=3-x,g(x)=
2x+5
,則f(x)*g(x)的最大值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設f(x)=2x+3,g(x+2)=f(x),則g(0)的值為( 。
A.1B.-1C.-3D.7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)f(x)=(2k-1)x-4在(-∞,+∞)是單調遞減函數(shù),則k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于任意的實數(shù)a,b,記max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函數(shù)y=f(x)(x∈R)是奇函數(shù),且當x≥0時,f(x)=(x-1)2-2;函數(shù)y=g(x)(x∈R)是正比例函數(shù),其圖象與x≥0時函數(shù)y=f(x)的圖象如圖所示,則下列關于函數(shù)y=F(x)的說法中,正確的是(  )
A.y=F(x)為奇函數(shù)
B.y=F(x)在(-3,0)上為增函數(shù)
C.y=F(x)的最小值為-2,最大值為2
D.以上說法都不正確

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知對數(shù)函數(shù)y=f(x)的圖象過點(8,3)
(1)試求出函數(shù)f(x)的解析式.
(2)判斷函數(shù)y=f(x)+3x的單調性,并說明理由.

查看答案和解析>>

同步練習冊答案