【題目】如圖,直三棱柱中,,,分別是的中點(diǎn).
(1)證明:平面平面;
(2)求三棱錐的高.
【答案】(1)證明見(jiàn)解析;(2)1.
【解析】分析:(1)要證明平面平面,利用平面與平面垂直的判定定理,在其中一個(gè)平面內(nèi)找一條直線與另一個(gè)平面垂直。由,是的中點(diǎn),可得。因?yàn)槿庵?/span>為直三棱柱,所以平面,進(jìn)而可得。由已知條件直三棱柱中,,,分別是的中點(diǎn).可得:,進(jìn)而得∽,所以,所以。因?yàn)?/span>,由直線與平面垂直的判定定理可得平面,再由平面與平面垂直的判定定理可得平面平面。(2)求三棱錐的高,直接作高不容易判斷垂足的位置,故可以用等體積法求高。由(1)可知可用 來(lái)求。由(1)知直線平面ADE,故求,,,進(jìn)而求得。由條件可求得, ,知三角形邊長(zhǎng)要求面積,應(yīng)先求一個(gè)角,故由余弦定理推論可得:,進(jìn)而求,可求, 設(shè)三棱錐的高為,由,得:,解得.
詳解:(1)由已知得:
所以∽
所以,所以
又因?yàn)?/span>,是的中點(diǎn),所以
所以平面,所以
而,所以平面
又平面,
所以平面平面;
(2)設(shè)三棱錐的高為,因?yàn)?/span>,
所以,
由已知可求得, ,
在中,由余弦定理的推論可得 ,
所以,所以,
由,得:,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}前n項(xiàng)和為Sn , 且 (n∈N*).
(Ⅰ) 求c,an;
(Ⅱ) 若 ,求數(shù)列{bn}前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n,(1+ )(1+ )…(1+ )<m,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是 ( )
A. “”是“”的充分不必要條件;
B. 如果命題“”與命題“p或q”都是真命題,那么命題一定是真命題.
C. 若命題p:,則;
D. 命題“若,則”的否命題是:“若,則”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為 . (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x+1)ex和函數(shù)g(x)=(ex﹣a)(x﹣1)2(a>0)(e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)判斷函數(shù)g(x)的極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(3)若函數(shù)g(x)存在極值為2a2 , 求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三棱錐P﹣ABC中,D是AC的中點(diǎn),,,.
(1)求證:PD⊥平面ABC;
(2)求二面角P﹣AB﹣C的正切值大�。�
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓(a>2)的離心率為,斜率為k(k>0)的直線L過(guò)點(diǎn)E(0,1)且與橢圓交于C,D兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l與x軸相交于點(diǎn)G,且,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com