設(shè)點、分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線、不重合),若、均與橢圓相切,試探究在軸上是否存在定點,使點到、的距離之積恒為1?若存在,請求出點坐標(biāo);若不存在,請說明理由.
(1);(2)定點存在,其坐標(biāo)為或.
解析試題分析:本題考查橢圓的標(biāo)準(zhǔn)方程以及直線與橢圓的位置關(guān)系等數(shù)學(xué)知識,考查分析問題解決問題的能力和計算能力,考查函數(shù)思想和分類討論思想.第一問,設(shè)出點坐標(biāo),用代數(shù)法解題,得到向量和的坐標(biāo),利用向量的數(shù)量積得出表達式,求出最小值,即可解出的值,即確定了的值,寫出橢圓的方程;第二問,由于直線與橢圓相切,所以直線與橢圓方程聯(lián)立消參,得出方程的判別式等于0,得出,同理,得出,所以,因為兩直線不重合,所以,若存在點,利用點到直線的距離公式得到距離之積為1的表達式,解出的值,由于的值存在,所以存在點,寫出坐標(biāo)即可.
試題解析:(I)設(shè),則有,
由最小值為得,
∴橢圓的方程為 4分
(II)把的方程代入橢圓方程得
∵直線與橢圓相切,∴,化簡得
同理可得:
∴,若,則重合,不合題意,
∴,即 8分
設(shè)在軸上存在點,點到直線的距離之積為1,則
,即,
把代入并去絕對值整理,或者
前式顯然不恒成立;而要使得后式對任意的恒成立
則,解得;
綜上所述,滿足題意的定點存在,其坐標(biāo)為或 . 12分
考點:1.橢圓的標(biāo)準(zhǔn)方程;2.向量的數(shù)量積;3.點到直線的距離公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線x2-y2=2若直線n的斜率為2 ,直線n與雙曲線相交于A、B兩點,線段AB的中點為P,
(1)求點P的坐標(biāo)(x,y)滿足的方程(不要求寫出變量的取值范圍);
(2)過雙曲線的左焦點F1,作傾斜角為的直線m交雙曲線于M、N兩點,期中,F(xiàn)2是雙曲線的右焦點,求△F2MN的面積S關(guān)于傾斜角的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點,焦點在坐標(biāo)軸上的雙曲線經(jīng)過、兩點
(1)求雙曲線的方程;
(2)設(shè)直線交雙曲線于、兩點,且線段被圓:三等分,求實數(shù)、的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線,其準(zhǔn)線方程為,過準(zhǔn)線與軸的交點做直線交拋物線于兩點.
(1)若點為中點,求直線的方程;
(2)設(shè)拋物線的焦點為,當(dāng)時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,橢圓的的一個頂點和兩個焦點構(gòu)成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A, B兩點,若點M(, 0),求證為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓上的點到左右兩焦點的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點的直線交橢圓于兩點,若軸上一點滿足,求直線的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線:.
(1)若曲線是焦點在軸上的橢圓,求的取值范圍;
(2)設(shè),過點的直線與曲線交于,兩點,為坐標(biāo)原點,若為直角,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(a>b>0)的離心率為,右焦點為(,0).
(I)求橢圓的方程;
(Ⅱ)過橢圓的右焦點且斜率為k的直線與橢圓交于點A(xl,y1),B(x2,y2),若, 求斜率k是的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com