設(shè)函數(shù)。

(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。

(2)若上的最大值為,求a的值。

 

【答案】

 【解析】考查函數(shù)導(dǎo)數(shù)運(yùn)算、利用導(dǎo)數(shù)處理函數(shù)最值等知識(shí)。

    解:對(duì)函數(shù)求導(dǎo)得:,定義域?yàn)椋?,2)

(1)  單調(diào)性的處理,通過(guò)導(dǎo)數(shù)的零點(diǎn)進(jìn)行穿線判別符號(hào)完成。

當(dāng)a=1時(shí),令

當(dāng)為增區(qū)間;當(dāng)為減函數(shù)。

(2)  區(qū)間上的最值問(wèn)題,通過(guò)導(dǎo)數(shù)得到單調(diào)性,結(jié)合極值點(diǎn)和端點(diǎn)的比較得到,確定

待定量a的值。

當(dāng)有最大值,則必不為減函數(shù),且>0,為單調(diào)遞增區(qū)間。

最大值在右端點(diǎn)取到。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分高☆考♂資♀源*網(wǎng)12分)

設(shè)函數(shù)。

(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。

(2)若上的最大值為,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省原名校高三下學(xué)期第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)。

(1)當(dāng)a=l時(shí),求函數(shù)的極值;

(2)當(dāng)a2時(shí),討論函數(shù)的單調(diào)性;

(3)若對(duì)任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求

實(shí)數(shù)m的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省高三上學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

設(shè)函數(shù)

(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。

(2)若上的最大值為,求a的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省高三教學(xué)質(zhì)量監(jiān)測(cè)理科數(shù)學(xué)卷 題型:解答題

(選修4—5:不等式選講)設(shè)函數(shù)。

(1)當(dāng)a=-5時(shí),求函數(shù)的定義域。

(2)若函數(shù)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案