已知{an}是公差不為零的等差數(shù)列,Sn是數(shù)列{an}的前n項和.
(I)若a2=1,S5=20,求數(shù)列{an}的通項公式;
(II)設(shè){bn}是等比數(shù)列,滿足b1=a12,b2=a22,b3=a32,求數(shù)列{bn}公比q的值.
分析:(I)設(shè){an}是公差d,由a2=1,S5=20建立方程求出公差與首項,代入等差數(shù)列的通項公式即可.
(II){bn}是等比數(shù)列,滿足b1=a12,b2=a22,b3=a32,由等比數(shù)列的性質(zhì)得到方程(a1+d)4=a1×(a1+2d)2,解出等差數(shù)列的首項與公差的關(guān)系,根據(jù)等比數(shù)列的性質(zhì)求公比.
解答:解:(I)設(shè){a
n}是公差d由題意
,∴
,∴a
n=3n-5
(II)∵{b
n}是等比數(shù)列,滿足b
1=a
12,b
2=a
22,b
3=a
32,∴(a
1+d)
4=a
1×(a
1+2d)
2,
∴(a
1+d)
2=a
1×(a
1+2d),(a
1+d)
2=-a
1×(a
1+2d)
∴d=0(舍)或d
2+4a
1d+2a
12=0∴d=(-2±
)a
1①當(dāng)d=(-2-
)a
1時,q=
=
(1+)2=3+2
②當(dāng)d=(-2+
)a
1時,q=
=
(1-)2=3-2
綜上,q=3+2
或q=3-2
點評:本題考查等差數(shù)列與等比數(shù)列的綜合,考查用等差數(shù)列的通項公式建立方程求通項公式以及用等比數(shù)列的性質(zhì)建立方程尋求數(shù)列滿足的關(guān)系求等比數(shù)列的公比.根據(jù)題意正確轉(zhuǎn)化是解題的關(guān)鍵.