【題目】若等差數(shù)列{an}的公差d≠0,前n項(xiàng)和為Sn,若n∈N*,都有Sn≤S10,則
A. n∈N*,都有an<an﹣1 B. a9a10>0
C. S2>S17 D. S19≥0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ex+x-4,則函數(shù)f(x)的零點(diǎn)位于區(qū)間( )
A. (-1,0) B. (0,1) C. (1,2) D. (2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017南京二模19】已知函數(shù)f(x)=exax1,其中e為自然對(duì)數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g(x)=(2e)x.
①求函數(shù)h(x)=f(x)g(x)的單調(diào)區(qū)間;
②若函數(shù)F(x)=的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)若存在實(shí)數(shù)x1,x2∈[0,2],使得f(x1)=f(x2),且|x1x2|≥1,求證:e1≤a≤e2e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評(píng)估一種農(nóng)作物的種植效果,選了n塊地作試驗(yàn)田.這n塊地的畝產(chǎn)量(單位:kg)分別為x1,x2,…,xn,下面給出的指標(biāo)中可以用來評(píng)估這種農(nóng)作物畝產(chǎn)量穩(wěn)定程度的是
A. x1,x2,…,xn的平均數(shù) B. x1,x2,…,xn的標(biāo)準(zhǔn)差
C. x1,x2,…,xn的最大值 D. x1,x2,…,xn的中位數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從高一某班學(xué)號(hào)為1-50的50名學(xué)生中隨機(jī)選取5名同學(xué)參加數(shù)列測試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號(hào)可能是( )
A. 2,11,23,34,45 B. 4,13,22,31,40
C. 3,13,25,37,47 D. 5,16,27,38,49
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)課代表給全班同學(xué)出了一道證明題,以下四人中只有一人說了真話,只有一人會(huì)證明此題。甲:我不會(huì)證明。乙:丙會(huì)證明。丙:丁會(huì)證明。。何也粫(huì)證明。根據(jù)以上條件,可以判定會(huì)證明此題的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個(gè)推導(dǎo)過程符合演繹推理三段論形式且推理正確的是( )
A. 大前提:無限不循環(huán)小數(shù)是無理數(shù);小前提:π是無理數(shù);結(jié)論:π是無限不循環(huán)小數(shù)
B. 大前提:無限不循環(huán)小數(shù)是無理數(shù);小前提:π是無限不循環(huán)小數(shù);結(jié)論:π是無理數(shù)
C. 大前提:π是無限不循環(huán)小數(shù);小前提:無限不循環(huán)小數(shù)是無理數(shù);結(jié)論:π是無理數(shù)
D. 大前提:π是無限不循環(huán)小數(shù);小前提:π是無理數(shù);結(jié)論:無限不循環(huán)小數(shù)是無理數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義域?yàn)镽的任意奇函數(shù)f(x)都恒成立的是( )
A. f(x)-f(-x)≥0 B. f(x)-f(-x)≤0
C. f(x)·f(-x)≤0 D. f(x)·f(-x)>0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com