某市舉行一次數(shù)學(xué)新課程骨干培訓(xùn)活動(dòng),共邀請(qǐng)15名使用不同版本教材的數(shù)學(xué)教師,具體情況數(shù)據(jù)如下表所示:

版本
人教A版
人教B版
性別
男教師
女教師
男教師
女教師
人數(shù)
6

4

 
現(xiàn)從這15名教師中隨機(jī)選出2名,則2人恰好是教不同版本的女教師的概率是.且.
(1)求實(shí)數(shù),的值
(2)培訓(xùn)活動(dòng)現(xiàn)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

(1)(2)的分布列為


0
1
2




                                                       
故數(shù)學(xué)期望

解析試題分析:解:(1)從15名教師中隨機(jī)選出2名共種選法, 所以這2人恰好是教不同版本的女教師的概率是. 計(jì)算可得,且,則 
(2)由題意得     
; ;
的分布列為


0
1
2




                                                       
故數(shù)學(xué)期望
考點(diǎn):分布列和數(shù)學(xué)期望
點(diǎn)評(píng):分布列是求出數(shù)學(xué)期望的前提,因而需寫好分布列,而分布列關(guān)鍵是求出概率,當(dāng)寫完分布列,可以結(jié)合概率總和為1的特點(diǎn)檢驗(yàn)分布列是否正確。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)一個(gè)盒子中裝有4張卡片,每張卡片上寫有1個(gè)數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機(jī)抽取卡片.
(Ⅰ)若一次從中隨機(jī)抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;
(Ⅱ)若第一次隨機(jī)抽取1張卡片,放回后再隨機(jī)抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
一個(gè)不透明的袋子中裝有4個(gè)形狀相同的小球,分別標(biāo)有不同的數(shù)字2,3,4,,現(xiàn)從袋中隨機(jī)摸出2個(gè)球,并計(jì)算摸出的這2個(gè)球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn)。記A事件為“數(shù)字之和為7”.試驗(yàn)數(shù)據(jù)如下表

摸球總次數(shù)
10
20
30
60
90
120
180
240
330
450
“和為7”出現(xiàn)的頻數(shù)
1
9
14
24
26
37
58
82
109
150
“和為7”出現(xiàn)的頻率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
(參考數(shù)據(jù):
(Ⅰ)如果試驗(yàn)繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為7”的頻率將穩(wěn)定在它的概率附近。試估計(jì)“出現(xiàn)數(shù)字之和為7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的條件下,設(shè)定一種游戲規(guī)則:每次摸2球,若數(shù)字和為7,則可獲得獎(jiǎng)金7元,否則需交5元。某人摸球3次,設(shè)其獲利金額為隨機(jī)變量元,求的數(shù)學(xué)期望和方差。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

百貨大樓在五一節(jié)舉行抽獎(jiǎng)活動(dòng),規(guī)則是:從裝有編為、四個(gè)小球的抽獎(jiǎng)箱中同時(shí)抽出兩個(gè)小球,兩個(gè)小球號(hào)碼相加之和等于中一等獎(jiǎng),等于中二等獎(jiǎng),等于中三等獎(jiǎng)。
(1)求中三等獎(jiǎng)的概率;
(2)求中獎(jiǎng)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

通過隨機(jī)詢問某校110名高中學(xué)生在購(gòu)買食物時(shí)是否看營(yíng)養(yǎng)說(shuō)明,得到如下的列聯(lián)表:
性別與看營(yíng)養(yǎng)說(shuō)明列聯(lián)表 單位: 名

 
 

 

 
總計(jì)
 
看營(yíng)養(yǎng)說(shuō)明
 
50
 
30
 
80
 
不看營(yíng)養(yǎng)說(shuō)明
 
10
 
20
 
30
 
總計(jì)
 
60
 
50
 
110
 
(1)從這50名女生中按是否看營(yíng)養(yǎng)說(shuō)明采取分層抽樣,抽取一個(gè)容量為10的樣本,問樣本中看與不看營(yíng)養(yǎng)說(shuō)明的女生各有多少名?
(2)根據(jù)以上列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為性別與是否看營(yíng)養(yǎng)說(shuō)明之間有關(guān)系?
下面的臨界值表供參考:

 
0.15
 
0.10
 
0.05
 
0.025
 
0.010
 
0.005
 
0.001
 

 
2.072
 
2.706
 
3.841
 
5.024
 
6.635
 
7.879
 
10.828
 
 (參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某單位實(shí)行休年假制度三年來(lái),名職工休年假的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì)結(jié)果如下表所示:

休假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問題:
⑴從該單位任選兩名職工,用表示這兩人休年假次數(shù)之和,記“函數(shù),在區(qū)間上有且只有一個(gè)零點(diǎn)”為事件,求事件發(fā)生的概率;
⑵從該單位任選兩名職工,用表示這兩人休年假次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在一場(chǎng)娛樂晚會(huì)上, 有5位民間歌手(1至5號(hào))登臺(tái)演唱, 由現(xiàn)場(chǎng)數(shù)百名觀眾投票選出最受歡迎歌手. 各位觀眾須彼此獨(dú)立地在選票上選3名選手, 其中觀眾甲是1號(hào)歌手的歌迷, 他必選1號(hào), 不選2號(hào), 另在3至5號(hào)中隨機(jī)選2名. 觀眾乙和丙對(duì)5位歌手的演唱沒有偏愛, 因此在1至5號(hào)中隨機(jī)選3名歌手.
(Ⅰ) 求觀眾甲選中3號(hào)歌手且觀眾乙未選中3號(hào)歌手的概率;
(Ⅱ) X表示3號(hào)歌手得到觀眾甲、乙、丙的票數(shù)之和, 求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

近幾年來(lái),我國(guó)許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進(jìn)行人工降雨。現(xiàn)由天氣預(yù)報(bào)得知,某地在未來(lái)3天的指定時(shí)間的降雨概率是:前2天均為50%,后1天為80%.3天內(nèi)任何一天的該指定時(shí)間沒有降雨,則在當(dāng)天實(shí)行人工降雨,否則,當(dāng)天不實(shí)施人工降雨.求不需要人工降雨的天數(shù)x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某食品加工廠甲,乙兩個(gè)車間包裝小食品,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一袋食品,稱其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說(shuō)明理由)?
(2)根據(jù)數(shù)據(jù)估計(jì)這兩個(gè)車間所包裝產(chǎn)品每袋的平均質(zhì)量;
(3)分析哪個(gè)車間的技術(shù)水平更好些?
附:

查看答案和解析>>

同步練習(xí)冊(cè)答案